Recherche avancée

Médias (91)

Autres articles (74)

  • Les vidéos

    21 avril 2011, par

    Comme les documents de type "audio", Mediaspip affiche dans la mesure du possible les vidéos grâce à la balise html5 .
    Un des inconvénients de cette balise est qu’elle n’est pas reconnue correctement par certains navigateurs (Internet Explorer pour ne pas le nommer) et que chaque navigateur ne gère en natif que certains formats de vidéos.
    Son avantage principal quant à lui est de bénéficier de la prise en charge native de vidéos dans les navigateur et donc de se passer de l’utilisation de Flash et (...)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

  • La file d’attente de SPIPmotion

    28 novembre 2010, par

    Une file d’attente stockée dans la base de donnée
    Lors de son installation, SPIPmotion crée une nouvelle table dans la base de donnée intitulée spip_spipmotion_attentes.
    Cette nouvelle table est constituée des champs suivants : id_spipmotion_attente, l’identifiant numérique unique de la tâche à traiter ; id_document, l’identifiant numérique du document original à encoder ; id_objet l’identifiant unique de l’objet auquel le document encodé devra être attaché automatiquement ; objet, le type d’objet auquel (...)

Sur d’autres sites (9052)

  • How HSBC and ING are transforming banking with AI

    9 novembre 2024, par Daniel Crough — Banking and Financial Services, Featured Banking Content

    We recently partnered with FinTech Futures to produce an exciting webinar discussing how analytics leaders from two global banks are using AI to protect customers, streamline operations, and support environmental goals.

    Watch the on-demand webinar : Advancing analytics maturity.

    By providing your email and clicking “submit”, you agree to receive direct marketing materials relating to Matomo products and services, surveys, information about events, publications and promotions. You can unsubscribe at any time by clicking the opt-out link provided in each communication. We will process your personal information in accordance with our Privacy Policy.

    <script>document.getElementById( "ak_js_3" ).setAttribute( "value", ( new Date() ).getTime() );</script>

    &lt;script&gt;<br />
    gform.initializeOnLoaded( function() {gformInitSpinner( 71, 'https://matomo.org/wp-content/plugins/gravityforms/images/spinner.svg', true );jQuery('#gform_ajax_frame_71').on('load',function(){var contents = jQuery(this).contents().find('*').html();var is_postback = contents.indexOf('GF_AJAX_POSTBACK') &gt;= 0;if(!is_postback){return;}var form_content = jQuery(this).contents().find('#gform_wrapper_71');var is_confirmation = jQuery(this).contents().find('#gform_confirmation_wrapper_71').length &gt; 0;var is_redirect = contents.indexOf('gformRedirect(){') &gt;= 0;var is_form = form_content.length &gt; 0 &amp;&amp; ! is_redirect &amp;&amp; ! is_confirmation;var mt = parseInt(jQuery('html').css('margin-top'), 10) + parseInt(jQuery('body').css('margin-top'), 10) + 100;if(is_form){jQuery('#gform_wrapper_71').html(form_content.html());if(form_content.hasClass('gform_validation_error')){jQuery('#gform_wrapper_71').addClass('gform_validation_error');} else {jQuery('#gform_wrapper_71').removeClass('gform_validation_error');}setTimeout( function() { /* delay the scroll by 50 milliseconds to fix a bug in chrome */  }, 50 );if(window['gformInitDatepicker']) {gformInitDatepicker();}if(window['gformInitPriceFields']) {gformInitPriceFields();}var current_page = jQuery('#gform_source_page_number_71').val();gformInitSpinner( 71, 'https://matomo.org/wp-content/plugins/gravityforms/images/spinner.svg', true );jQuery(document).trigger('gform_page_loaded', [71, current_page]);window['gf_submitting_71'] = false;}else if(!is_redirect){var confirmation_content = jQuery(this).contents().find('.GF_AJAX_POSTBACK').html();if(!confirmation_content){confirmation_content = contents;}setTimeout(function(){jQuery('#gform_wrapper_71').replaceWith(confirmation_content);jQuery(document).trigger('gform_confirmation_loaded', [71]);window['gf_submitting_71'] = false;wp.a11y.speak(jQuery('#gform_confirmation_message_71').text());}, 50);}else{jQuery('#gform_71').append(contents);if(window['gformRedirect']) {gformRedirect();}}jQuery(document).trigger(&quot;gform_pre_post_render&quot;, [{ formId: &quot;71&quot;, currentPage: &quot;current_page&quot;, abort: function() { this.preventDefault(); } }]);                if (event.defaultPrevented) {                return;         }        const gformWrapperDiv = document.getElementById( &quot;gform_wrapper_71&quot; );        if ( gformWrapperDiv ) {            const visibilitySpan = document.createElement( &quot;span&quot; );            visibilitySpan.id = &quot;gform_visibility_test_71&quot;;            gformWrapperDiv.insertAdjacentElement( &quot;afterend&quot;, visibilitySpan );        }        const visibilityTestDiv = document.getElementById( &quot;gform_visibility_test_71&quot; );        let postRenderFired = false;                function triggerPostRender() {            if ( postRenderFired ) {                return;            }            postRenderFired = true;            jQuery( document ).trigger( 'gform_post_render', [71, current_page] );            gform.utils.trigger( { event: 'gform/postRender', native: false, data: { formId: 71, currentPage: current_page } } );            if ( visibilityTestDiv ) {                visibilityTestDiv.parentNode.removeChild( visibilityTestDiv );            }        }        function debounce( func, wait, immediate ) {            var timeout;            return function() {                var context = this, args = arguments;                var later = function() {                    timeout = null;                    if ( !immediate ) func.apply( context, args );                };                var callNow = immediate &amp;&amp; !timeout;                clearTimeout( timeout );                timeout = setTimeout( later, wait );                if ( callNow ) func.apply( context, args );            };        }        const debouncedTriggerPostRender = debounce( function() {            triggerPostRender();        }, 200 );        if ( visibilityTestDiv &amp;&amp; visibilityTestDiv.offsetParent === null ) {            const observer = new MutationObserver( ( mutations ) =&gt; {                mutations.forEach( ( mutation ) =&gt; {                    if ( mutation.type === 'attributes' &amp;&amp; visibilityTestDiv.offsetParent !== null ) {                        debouncedTriggerPostRender();                        observer.disconnect();                    }                });            });            observer.observe( document.body, {                attributes: true,                childList: false,                subtree: true,                attributeFilter: [ 'style', 'class' ],            });        } else {            triggerPostRender();        }    } );} );<br />
    &lt;/script&gt;

    Meet the expert panel

    Roshini Johri heads ESG Analytics at HSBC, where she leads AI and remote sensing applications supporting the bank’s net zero goals. Her expertise spans climate tech and financial services, with a focus on scalable analytics solutions.

     

    Marco Li Mandri leads Advanced Analytics Strategy at ING, where he focuses on delivering high-impact solutions and strengthening analytics foundations. His background combines analytics, KYC operations, and AI strategy.

     

    Carmen Soini Tourres works as a Web Analyst Consultant at Matomo, helping financial organisations optimise their digital presence whilst maintaining privacy compliance.

     

    Key findings from the webinar

    The discussion highlighted four essential elements for advancing analytics capabilities :

    1. Strong data foundations matter most

    “It doesn’t matter how good the AI model is. It is garbage in, garbage out,”

    Johri explained. Banks need robust data governance that works across different regulatory environments.

    2. Transform rather than tweak

    Li Mandri emphasised the need to reconsider entire processes :

    “We try to look at the banking domain and processes and try to re-imagine how they should be done with AI.”

    3. Bridge technical and business understanding

    Both leaders stressed the value of analytics translators who understand both technology and business needs.

    “We’re investing in this layer we call product leads,”

    Li Mandri explained. These roles combine technical knowledge with business acumen – a rare but vital skill set.

    4. Consider production costs early

    Moving from proof-of-concept to production requires careful planning. As Johri noted :

    “The scale of doing things in production is quite massive and often doesn’t get accounted for in the cost.”

    This includes :

    • Ongoing monitoring requirements
    • Maintenance needs
    • Regulatory compliance checks
    • Regular model updates

    Real-world applications

    ING’s approach demonstrates how banks can transform their operations through thoughtful AI implementation. Li Mandri shared several areas where the bank has successfully deployed analytics solutions, each benefiting both the bank and its customers.

    Customer experience enhancement

    The bank’s implementation of AI-powered instant loan processing shows how analytics can transform traditional banking.

    “We know AI can make loans instant for the customer, that’s great. Clicking one button and adding a loan, that really changes things,”

    Li Mandri explained. This goes beyond automation – it represents a fundamental shift in how banks serve their customers.

    The system analyses customer data to make rapid lending decisions while maintaining strong risk assessment standards. For customers, this means no more lengthy waiting periods or complex applications. For the bank, it means more efficient resource use and better risk management.

    The bank also uses AI to personalise customer communications.

    “We’re using that to make certain campaigns more personalised, having a certain tone of voice,”

    noted Li Mandri. This particularly resonates with younger customers who expect relevant, personalised interactions from their bank.

    Operational efficiency transformation

    ING’s approach to Know Your Customer (KYC) processes shows how AI can transform resource-heavy operations.

    “KYC is a big area of cost for the bank. So we see massive value there, a lot of scale,”

    Li Mandri explained. The bank developed an AI-powered system that :

    • Automates document verification
    • Flags potential compliance issues for human review
    • Maintains consistent standards across jurisdictions
    • Reduces processing time while improving accuracy

    This implementation required careful consideration of regulations across different markets. The bank developed monitoring systems to ensure their AI models maintain high accuracy while meeting compliance standards.

    In the back office, ING uses AI to extract and process data from various documents, significantly reducing manual work. This automation lets staff focus on complex tasks requiring human judgment.

    Sustainable finance initiatives

    ING’s commitment to sustainable banking has driven innovative uses of AI in environmental assessment.

    “We have this ambition to be a sustainable bank. If you want to be a sustainable finance customer, that requires a lot of work to understand who the company is, always comparing against its peers.”

    The bank developed AI models that :

    • Analyse company sustainability metrics
    • Compare environmental performance against industry benchmarks
    • Assess transition plans for high-emission industries
    • Monitor ongoing compliance with sustainability commitments

    This system helps staff evaluate the environmental impact of potential deals quickly and accurately.

    “We are using AI there to help our frontline process customers to see how green that deal might be and then use that as a decision point,”

    Li Mandri noted.

    HSBC’s innovative approach

    Under Johri’s leadership, HSBC has developed several groundbreaking uses of AI and analytics, particularly in environmental monitoring and operational efficiency. Their work shows how banks can use advanced technology to address complex global challenges while meeting regulatory requirements.

    Environmental monitoring through advanced technology

    HSBC uses computer vision and satellite imagery analysis to measure environmental impact with new precision.

    “This is another big research area where we look at satellite images and we do what is called remote sensing, which is the study of a remote area,”

    Johri explained.

    The system provides several key capabilities :

    • Analysis of forest coverage and deforestation rates
    • Assessment of biodiversity impact in specific regions
    • Monitoring of environmental changes over time
    • Measurement of environmental risk in lending portfolios

    “We can look at distant images of forest areas and understand how much percentage deforestation is being caused in that area, and we can then measure our biodiversity impact more accurately,”

    Johri noted. This technology enables HSBC to :

    • Make informed lending decisions
    • Monitor environmental commitments of borrowers
    • Support sustainability-linked lending programmes
    • Provide accurate environmental impact reporting

    Transforming document analysis

    HSBC is tackling one of banking’s most time-consuming challenges : processing vast amounts of documentation.

    “Can we reduce the onus of human having to go and read 200 pages of sustainability reports each time to extract answers ?”

    Johri asked. Their solution combines several AI technologies to make this process more efficient while maintaining accuracy.

    The bank’s approach includes :

    • Natural language processing to understand complex documents
    • Machine learning models to extract relevant information
    • Validation systems to ensure accuracy
    • Integration with existing compliance frameworks

    “We’re exploring solutions to improve our reporting, but we need to do it in a safe, robust and transparent way.”

    This careful balance between efficiency and accuracy exemplifies HSBC’s approach to AI.

    Building future-ready analytics capabilities

    Both banks emphasise that successful analytics requires a comprehensive, long-term approach. Their experiences highlight several critical considerations for financial institutions looking to advance their analytics capabilities.

    Developing clear governance frameworks

    “Understanding your AI risk appetite is crucial because banking is a highly regulated environment,”

    Johri emphasised. Banks need to establish governance structures that :

    • Define acceptable uses for AI
    • Establish monitoring and control mechanisms
    • Ensure compliance with evolving regulations
    • Maintain transparency in AI decision-making

    Creating solutions that scale

    Li Mandri stressed the importance of building systems that grow with the organisation :

    “When you try to prototype a model, you have to take care about the data safety, ethical consideration, you have to identify a way to monitor that model. You need model standard governance.”

    Successful scaling requires :

    • Standard approaches to model development
    • Clear evaluation frameworks
    • Simple processes for model updates
    • Strong monitoring systems
    • Regular performance reviews

    Investing in people and skills

    Both leaders highlighted how important skilled people are to analytics success.

    “Having a good hiring strategy as well as creating that data literacy is really important,”

    Johri noted. Banks need to :

    • Develop comprehensive training programmes
    • Create clear career paths for analytics professionals
    • Foster collaboration between technical and business teams
    • Build internal expertise in emerging technologies

    Planning for the future

    Looking ahead, both banks are preparing for increased regulation and growing demands for transparency. Key focus areas include :

    • Adapting to new privacy regulations
    • Making AI decisions more explainable
    • Improving data quality and governance
    • Strengthening cybersecurity measures

    Practical steps for financial institutions

    The experiences shared by HSBC and ING provide valuable insights for financial institutions at any stage of their analytics journey. Their successes and challenges outline a clear path forward.

    Key steps for success

    Financial institutions looking to enhance their analytics capabilities should :

    1. Start with strong foundations
      • Invest in clear data governance frameworks
      • Set data quality standards
      • Build thorough documentation processes
      • Create transparent data tracking
    2. Think strategically about AI implementation
      • Focus on transformative rather than small changes
      • Consider the full costs of AI projects
      • Build solutions that can grow
      • Balance innovation with risk management
    3. Invest in people and processes
      • Develop internal analytics expertise
      • Create clear paths for career growth
      • Foster collaboration between technical and business teams
      • Build a culture of data literacy
    4. Plan for scale
      • Establish monitoring systems
      • Create governance frameworks
      • Develop standard approaches to model development
      • Stay flexible for future regulatory changes

    Learn more

    Want to hear more insights from these industry leaders ? Watch the complete webinar recording on demand. You’ll learn :

    • Detailed technical insights from both banks
    • Extended Q&A with the speakers
    • Additional case studies and examples
    • Practical implementation advice
     
     

    Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

    Watch the on-demand webinar : Advancing analytics maturity.

    By providing your email and clicking “submit”, you agree to receive direct marketing materials relating to Matomo products and services, surveys, information about events, publications and promotions. You can unsubscribe at any time by clicking the opt-out link provided in each communication. We will process your personal information in accordance with our Privacy Policy.

    &lt;script&gt;document.getElementById( &quot;ak_js_4&quot; ).setAttribute( &quot;value&quot;, ( new Date() ).getTime() );&lt;/script&gt;

    &lt;script&gt;<br />
    gform.initializeOnLoaded( function() {gformInitSpinner( 71, 'https://matomo.org/wp-content/plugins/gravityforms/images/spinner.svg', true );jQuery('#gform_ajax_frame_71').on('load',function(){var contents = jQuery(this).contents().find('*').html();var is_postback = contents.indexOf('GF_AJAX_POSTBACK') &gt;= 0;if(!is_postback){return;}var form_content = jQuery(this).contents().find('#gform_wrapper_71');var is_confirmation = jQuery(this).contents().find('#gform_confirmation_wrapper_71').length &gt; 0;var is_redirect = contents.indexOf('gformRedirect(){') &gt;= 0;var is_form = form_content.length &gt; 0 &amp;&amp; ! is_redirect &amp;&amp; ! is_confirmation;var mt = parseInt(jQuery('html').css('margin-top'), 10) + parseInt(jQuery('body').css('margin-top'), 10) + 100;if(is_form){jQuery('#gform_wrapper_71').html(form_content.html());if(form_content.hasClass('gform_validation_error')){jQuery('#gform_wrapper_71').addClass('gform_validation_error');} else {jQuery('#gform_wrapper_71').removeClass('gform_validation_error');}setTimeout( function() { /* delay the scroll by 50 milliseconds to fix a bug in chrome */  }, 50 );if(window['gformInitDatepicker']) {gformInitDatepicker();}if(window['gformInitPriceFields']) {gformInitPriceFields();}var current_page = jQuery('#gform_source_page_number_71').val();gformInitSpinner( 71, 'https://matomo.org/wp-content/plugins/gravityforms/images/spinner.svg', true );jQuery(document).trigger('gform_page_loaded', [71, current_page]);window['gf_submitting_71'] = false;}else if(!is_redirect){var confirmation_content = jQuery(this).contents().find('.GF_AJAX_POSTBACK').html();if(!confirmation_content){confirmation_content = contents;}setTimeout(function(){jQuery('#gform_wrapper_71').replaceWith(confirmation_content);jQuery(document).trigger('gform_confirmation_loaded', [71]);window['gf_submitting_71'] = false;wp.a11y.speak(jQuery('#gform_confirmation_message_71').text());}, 50);}else{jQuery('#gform_71').append(contents);if(window['gformRedirect']) {gformRedirect();}}jQuery(document).trigger(&quot;gform_pre_post_render&quot;, [{ formId: &quot;71&quot;, currentPage: &quot;current_page&quot;, abort: function() { this.preventDefault(); } }]);                if (event.defaultPrevented) {                return;         }        const gformWrapperDiv = document.getElementById( &quot;gform_wrapper_71&quot; );        if ( gformWrapperDiv ) {            const visibilitySpan = document.createElement( &quot;span&quot; );            visibilitySpan.id = &quot;gform_visibility_test_71&quot;;            gformWrapperDiv.insertAdjacentElement( &quot;afterend&quot;, visibilitySpan );        }        const visibilityTestDiv = document.getElementById( &quot;gform_visibility_test_71&quot; );        let postRenderFired = false;                function triggerPostRender() {            if ( postRenderFired ) {                return;            }            postRenderFired = true;            jQuery( document ).trigger( 'gform_post_render', [71, current_page] );            gform.utils.trigger( { event: 'gform/postRender', native: false, data: { formId: 71, currentPage: current_page } } );            if ( visibilityTestDiv ) {                visibilityTestDiv.parentNode.removeChild( visibilityTestDiv );            }        }        function debounce( func, wait, immediate ) {            var timeout;            return function() {                var context = this, args = arguments;                var later = function() {                    timeout = null;                    if ( !immediate ) func.apply( context, args );                };                var callNow = immediate &amp;&amp; !timeout;                clearTimeout( timeout );                timeout = setTimeout( later, wait );                if ( callNow ) func.apply( context, args );            };        }        const debouncedTriggerPostRender = debounce( function() {            triggerPostRender();        }, 200 );        if ( visibilityTestDiv &amp;&amp; visibilityTestDiv.offsetParent === null ) {            const observer = new MutationObserver( ( mutations ) =&gt; {                mutations.forEach( ( mutation ) =&gt; {                    if ( mutation.type === 'attributes' &amp;&amp; visibilityTestDiv.offsetParent !== null ) {                        debouncedTriggerPostRender();                        observer.disconnect();                    }                });            });            observer.observe( document.body, {                attributes: true,                childList: false,                subtree: true,                attributeFilter: [ 'style', 'class' ],            });        } else {            triggerPostRender();        }    } );} );<br />
    &lt;/script&gt;
  • How add Data Stream into MXF(using mpeg2video) file with FFmpeg and C/C++

    26 mars 2019, par Helmuth Schmitz

    I’m a little bit stuck here trying create a MXF file
    with data stream on it. I have several MXF video files that contain
    this standard

    **1 Video Stream:
        Stream #0:0: Video: mpeg2video (4:2:2), yuv422p(tv, bt709, top first), 1920x1080 [SAR 1:1 DAR 16:9], 50000 kb/s, 29.9
    16 audio streams
        Audio: pcm_s24le, 48000 Hz, 1 channels, s32 (24 bit), 1152 kb/s
    1 Data Stream:
        Data: none**

    This data stream, contain personal data inside video file. I can
    open this stream and data is really there. Is all ok. But, when i try
    to create a file exactly like this, everytime i call "avformat_write_header"
    it returns an error.

    If i do comment the creation of this data streams the video file is succeffully
    created.

    If i change to "mpegts" with this data stream, the video file is also succeffully
    created.

    But, i can’t use mpets and i need this data stream.

    I know that is possible MXF with data stream cause i have this originals files
    that have this combination.

    So, i know that i missing something in my code.

    This is the way i create this Data Stream :

    void CFFmpegVideoWriter::addDataStream(EOutputStream *ost, AVFormatContext *oc, AVCodec **codec, enum AVCodecID codec_id)
       {
           AVCodecParameters *par;

           ost->stream = avformat_new_stream(oc, NULL);
           if (ost->stream == NULL)
           {
               fprintf(stderr, "OOooohhh man: avformat_new_stream() failed.\n");
               return;
           }

           par = ost->stream->codecpar;
           ost->stream->index = 17;
           par->codec_id = AV_CODEC_ID_NONE;
           par->codec_type = AVMEDIA_TYPE_DATA;

           ost->stream->codec->flags |= AV_CODEC_FLAG_GLOBAL_HEADER;
       }

    the file openning is this :

    CFFMpegVideoWriter::CFFMpegVideoWriter(QString outputfilename) : QThread()
    {
       av_register_all();
       avcodec_register_all();

       isOpen = false;
       shouldClose = false;

       frameIndex = 0;

    #ifdef __linux__
       QByteArray bFilename = outputfilename.toUtf8();
    #else
       QByteArray bFilename = outputfilename.toLatin1();
    #endif

       const char* filename = bFilename.data();

       codecContext = NULL;

       //encontra o formato desejado...
       outputFormat = av_guess_format("mp2v", filename, nullptr);
       if (!outputFormat)
       {
           qDebug("Could not find suitable output format\n");
           return;
       }

       //encontra o codec...
       codec = avcodec_find_encoder(outputFormat->video_codec);
       if (!codec)
       {
           qDebug( "Codec not found\n");
           return;
       }

       //aloca o contexto do codec...
       codecContext = avcodec_alloc_context3(codec);
       codecContext->field_order = AV_FIELD_TT;
       codecContext->profile = FF_PROFILE_MPEG2_422;

       //aloca o contexto do formato...
       formatContext = avformat_alloc_context();
       formatContext->oformat = outputFormat;

       //aloca o contexto da midia de saida...
       avformat_alloc_output_context2(&amp;formatContext, NULL, NULL, filename);
       if (!formatContext)
       {
           qDebug("Erro");
           return;
       }

       videoStream.tmp_frame = NULL;
       videoStream.swr_ctx = NULL;

       //adiciona a stream de video...
       if (outputFormat->video_codec != AV_CODEC_ID_NONE)
       {
           addVideoStream(&amp;videoStream, formatContext, &amp;video_codec, outputFormat->video_codec);      
       }

       //adiciona as 16 streams de audio...
       if (outputFormat->audio_codec != AV_CODEC_ID_NONE)
       {
           for (int i = 0; i &lt; 16; i++)
           {
               addAudioStream(&amp;audioStream[i], formatContext, &amp;audio_codec, outputFormat->audio_codec);
           }      
       }

       addDataStream(&amp;datastream, formatContext, &amp;video_codec, outputFormat->video_codec);    

       videoStream.sws_ctx = NULL;
       for (int i = 0; i &lt; 16; i++)
       {
           audioStream[i].sws_ctx = NULL;
       }  
       opt = NULL;


       //carreca o codec de video para stream de video...      
       initVideoCodec(formatContext, video_codec, &amp;videoStream, opt);


       //carrega o codec de audio para stream de audio...s
       for (int i = 0; i &lt; 16; i++)
       {
           initAudioCodec(formatContext, audio_codec, &amp;audioStream[i], opt);
       }


       av_dump_format(formatContext, 0, filename, 1);

       //abrea o arquivo de saida..
       if (!(outputFormat->flags &amp; AVFMT_NOFILE))
       {
           ret = avio_open(&amp;formatContext->pb, filename, AVIO_FLAG_WRITE);
           if (ret &lt; 0)
           {
               qDebug("Could not open'%s", filename);
               return;
           }
       }

       //escreve o cabecalho do arquivo...
       ret = avformat_write_header(formatContext, &amp;opt);
       if (ret &lt; 0)
       {
           qDebug("Error occurred when opening output file");
           return;
       }

       isOpen = true;

       QThread::start();
    }

    The code always fails at "avformat_write_header" call.

    But if i remove "datastream" or change it to mpegts everything runs fine.

    Any ideia of what am i doing wrong here ?

    Thanks for reading this.

    Helmuth

  • ffmpeg Output file #0 does not contain any stream when trying to access 1 of 2 audio streams

    7 juillet 2019, par nulltorpedo
    ffmpeg -i input.mkv  -map 0:2 -c copy -strict -2  audio.mkv

    Hi I have the above command. The output shows that there are 2 audio streams. I want to copy just the ac3 audio (actually I want to convert it but even this copy does not work). I have truncated the output print where there is metadata

    NEW updated sample with full log which results in same message

    ffmpeg -i input.mka -map 0:0 -c:a libfdk_aac   aac_out.m4a
    ffmpeg version 2.7.1 Copyright (c) 2000-2015 the FFmpeg developers
     built with gcc 4.9.3 (crosstool-NG 1.20.0) 20150311 (prerelease)
     configuration: --prefix=/usr --incdir='${prefix}/include/ffmpeg' --arch=i686 --target-os=linux --cross-prefix=/usr/local/x86_64-pc-linux-gnu/bin/x86_64-pc-linux-gnu- --enable-cross-compile --enable-optimizations --enable-pic --enable-gpl --enable-shared --disable-static --enable-version3 --enable-nonfree --enable-libfaac --enable-encoders --enable-pthreads --disable-bzlib --disable-protocol=rtp --disable-muxer=image2 --disable-muxer=image2pipe --disable-swscale-alpha --disable-ffserver --disable-ffplay --disable-devices --disable-bzlib --disable-altivec --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libmp3lame --disable-vaapi --disable-decoder=amrnb --disable-decoder=ac3 --disable-decoder=ac3_fixed --disable-encoder=zmbv --disable-encoder=dca --disable-encoder=ac3 --disable-encoder=ac3_fixed --disable-encoder=eac3 --disable-decoder=dca --disable-decoder=eac3 --disable-decoder=truehd --cc=/usr/local/x86_64-pc-linux-gnu/bin/x86_64-pc-linux-gnu-ccache-gcc --enable-yasm --enable-libx264 --enable-encoder=libx264
     libavutil      54. 27.100 / 54. 27.100
     libavcodec     56. 41.100 / 56. 41.100
     libavformat    56. 36.100 / 56. 36.100
     libavdevice    56.  4.100 / 56.  4.100
     libavfilter     5. 16.101 /  5. 16.101
     libswscale      3.  1.101 /  3.  1.101
     libswresample   1.  2.100 /  1.  2.100
     libpostproc    53.  3.100 / 53.  3.100
    Input #0, matroska,webm, from '/volume1/..../input.mka':
     Metadata:
       encoder         : libebml v1.3.9 + libmatroska v1.5.2
       creation_time   : 2019-07-07 06:19:20
     Duration: 02:29:21.98, start: 0.000000, bitrate: 640 kb/s
       Stream #0:0(eng): Audio: ac3, 48000 Hz, 5.1(side), 640 kb/s
       Metadata:
         BPS-eng         : 640000
         DURATION-eng    : 02:29:21.984000480
         NUMBER_OF_FRAMES-eng: 280062
         NUMBER_OF_BYTES-eng: 716958720
         _STATISTICS_WRITING_APP-eng: mkvmerge v35.0.0 ('All The Love In The World') 64-bit
         _STATISTICS_WRITING_DATE_UTC-eng: 2019-07-07 06:19:20
         _STATISTICS_TAGS-eng: BPS DURATION NUMBER_OF_FRAMES NUMBER_OF_BYTES
    Output #0, ipod, to 'aac_out.m4a':
     Metadata:
       encoder         : libebml v1.3.9 + libmatroska v1.5.2
    Output file #0 does not contain any stream