Recherche avancée

Médias (91)

Autres articles (99)

  • Gestion de la ferme

    2 mars 2010, par

    La ferme est gérée dans son ensemble par des "super admins".
    Certains réglages peuvent être fais afin de réguler les besoins des différents canaux.
    Dans un premier temps il utilise le plugin "Gestion de mutualisation"

  • Installation en mode ferme

    4 février 2011, par

    Le mode ferme permet d’héberger plusieurs sites de type MediaSPIP en n’installant qu’une seule fois son noyau fonctionnel.
    C’est la méthode que nous utilisons sur cette même plateforme.
    L’utilisation en mode ferme nécessite de connaïtre un peu le mécanisme de SPIP contrairement à la version standalone qui ne nécessite pas réellement de connaissances spécifique puisque l’espace privé habituel de SPIP n’est plus utilisé.
    Dans un premier temps, vous devez avoir installé les mêmes fichiers que l’installation (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (8389)

  • Simply beyond ridiculous

    7 mai 2010, par Dark Shikari — H.265, speed

    For the past few years, various improvements on H.264 have been periodically proposed, ranging from larger transforms to better intra prediction. These finally came together in the JCT-VC meeting this past April, where over two dozen proposals were made for a next-generation video coding standard. Of course, all of these were in very rough-draft form ; it will likely take years to filter it down into a usable standard. In the process, they’ll pick the most useful features (hopefully) from each proposal and combine them into something a bit more sane. But, of course, it all has to start somewhere.

    A number of features were common : larger block sizes, larger transform sizes, fancier interpolation filters, improved intra prediction schemes, improved motion vector prediction, increased internal bit depth, new entropy coding schemes, and so forth. A lot of these are potentially quite promising and resolve a lot of complaints I’ve had about H.264, so I decided to try out the proposal that appeared the most interesting : the Samsung+BBC proposal (A124), which claims compression improvements of around 40%.

    The proposal combines a bouillabaisse of new features, ranging from a 12-tap interpolation filter to 12thpel motion compensation and transforms as large as 64×64. Overall, I would say it’s a good proposal and I don’t doubt their results given the sheer volume of useful features they’ve dumped into it. I was a bit worried about complexity, however, as 12-tap interpolation filters don’t exactly scream “fast”.

    I prepared myself for the slowness of an unoptimized encoder implementation, compiled their tool, and started a test encode with their recommended settings.

    I waited. The first frame, an I-frame, completed.

    I took a nap.

    I waited. The second frame, a P-frame, was done.

    I played a game of Settlers.

    I waited. The third frame, a B-frame, was done.

    I worked on a term paper.

    I waited. The fourth frame, a B-frame, was done.

    After a full 6 hours, 8 frames had encoded. Yes, at this rate, it would take a full two weeks to encode 10 seconds of HD video. On a Core i7. This is not merely slow ; this is over 1000 times slower than x264 on “placebo” mode. This is so slow that it is not merely impractical ; it is impossible to even test. This encoder is apparently designed for some sort of hypothetical future computer from space. And word from other developers is that the Intel proposal is even slower.

    This has led me to suspect that there is a great deal of cheating going on in the H.265 proposals. The goal of the proposals, of course, is to pick the best feature set for the next generation video compression standard. But there is an extra motivation : organizations whose features get accepted get patents on the resulting standard, and thus income. With such large sums of money in the picture, dishonesty becomes all the more profitable.

    There is a set of rules, of course, to limit how the proposals can optimize their encoders. If different encoders use different optimization techniques, the results will no longer be comparable — remember, they are trying to compare compression features, not methods of optimizing encoder-side decisions. Thus all encoders are required to use a constant quantizer, specified frame types, and so forth. But there are no limits on how slow an encoder can be or what algorithms it can use.

    It would be one thing if the proposed encoder was a mere 10 times slower than the current reference ; that would be reasonable, given the low level of optimization and higher complexity of the new standard. But this is beyond ridiculous. With the prize given to whoever can eke out the most PSNR at a given quantizer at the lowest bitrate (with no limits on speed), we’re just going to get an arms race of slow encoders, with every company trying to use the most ridiculous optimizations possible, even if they involve encoding the frame 100,000 times over to choose the optimal parameters. And the end result will be as I encountered here : encoders so slow that they are simply impossible to even test.

    Such an arms race certainly does little good in optimizing for reality where we don’t have 30 years to encode an HD movie : a feature that gives great compression improvements is useless if it’s impossible to optimize for in a reasonable amount of time. Certainly once the standard is finalized practical encoders will be written — but it makes no sense to optimize the standard for a use-case that doesn’t exist. And even attempting to “optimize” anything is difficult when encoding a few seconds of video takes weeks.

    Update : The people involved have contacted me and insist that there was in fact no cheating going on. This is probably correct ; the problem appears to be that the rules that were set out were simply not strict enough, making many changes that I would intuitively consider “cheating” to be perfectly allowed, and thus everyone can do it.

    I would like to apologize if I implied that the results weren’t valid ; they are — the Samsung-BBC proposal is definitely one of the best, which is why I picked it to test with. It’s just that I think any situation in which it’s impossible to test your own software is unreasonable, and thus the entire situation is an inherently broken one, given the lax rules, slow baseline encoder, and no restrictions on compute time.

  • Who Invented FLIC ?

    26 mai 2011, par Multimedia Mike — Multimedia History

    I have been reading through “All Your Base Are Belong To Us : How 50 Years of Video Games Conquered Pop Culture” by Harold Goldberg. Despite the title, Zero Wing has yet to be mentioned (I’m about halfway done).



    I just made it through the chapter describing early breakthrough CD-ROM games, including Myst, The 7th Guest, and The 11th Hour. Some interesting tidbits :

    The 7th Guest
    Of course, Graeme Devine created a new FMV format (called VDX, documented here) for The 7th Guest. The player was apparently called PLAY and the book claims that Autodesk was so impressed by the technology that it licensed the player for use in its own products. When I think of an Autodesk multimedia format, I think of FLIC. The VDX coding format doesn’t look too much like FLIC, per my reading.

    Here’s the relevant passage (pp 118-119) :

    Devine began working on creating software within the CD-ROM disk that would play full-motion video. Within days he had a robust but small ninety-kilobyte player called PLAY that was so good, it was licensed by Autodesk, the makers of the best 3-D animation program at the time. Then Devine figured out a way to compress the huge video files so that they would easily fit on two CD-ROMs.

    Googling for “autodesk trilobyte play program” (Trilobyte was the company behind 7th Guest) led me to this readme file for a program called PLAY73 (hosted at Jason Scott’s massive CD-ROM archive, and it’s on a disc that, incidentally, I donated to the archive ; so, let’s here it for Jason’s tireless archival efforts ! And for Google’s remarkable indexing prowess). The file — dated September 10, 1991 — mentions that it’s a FLICK player, copyright Trilobyte software.



    However, it also mentions being a Groovie Player. Based on ScummVM’s reimplementation of the VDX format, Groovie might refer to the engine behind The 7th Guest.

    So now I’m really interested : Did Graeme Devine create the FLIC file format ? Multimedia nerds want to know !

    I guess not. Thanks to Jim Leonard for digging up this item : “I developed the flic file format for the Autodesk Animator.” Jim Kent, Dr. Dobbs Magazine, March 1993.

    The PLAY73 changelog reveals something from the bad old days of DOS/PC programming : The necessity of writing graphics drivers for 1/2 dozen different video adapters. The PLAY73 readme file also has some vintage contact address for Graeme Devine ; remember when addresses looked like these ?

    If you have any comments, please send them to :
    	Compuserve : 72330,3276
    	Genie : G.DEVINE
    	Internet : 72330,3276@compuserve.com
    

    The 11th Hour
    The book didn’t really add anything I didn’t already know regarding the compression format (RoQ) used in 11th Hour. I already knew how hard Devine worked at it. This book took pains to emphasize the emotional toll taken on the format’s creator.

    I wonder if he would be comforted to know that, more than 15 years later, people are still finding ways to use the format.

  • My journey to Coviu

    27 octobre 2015, par silvia

    My new startup just released our MVP – this is the story of what got me here.

    I love creating new applications that let people do their work better or in a manner that wasn’t possible before.

    German building and loan socityMy first such passion was as a student intern when I built a system for a building and loan association’s monthly customer magazine. The group I worked with was managing their advertiser contacts through a set of paper cards and I wrote a dBase based system (yes, that long ago) that would manage their customer relationships. They loved it – until it got replaced by an SAP system that cost 100 times what I cost them, had really poor UX, and only gave them half the functionality. It was a corporate system with ongoing support, which made all the difference to them.

    Dr Scholz und Partner GmbHThe story repeated itself with a CRM for my Uncle’s construction company, and with a resume and quotation management system for Accenture right after Uni, both of which I left behind when I decided to go into research.

    Even as a PhD student, I never lost sight of challenges that people were facing and wanted to develop technology to overcome problems. The aim of my PhD thesis was to prepare for the oncoming onslaught of audio and video on the Internet (yes, this was 1994 !) by developing algorithms to automatically extract and locate information in such files, which would enable users to structure, index and search such content.

    Many of the use cases that we explored are now part of products or continue to be challenges : finding music that matches your preferences, identifying music or video pieces e.g. to count ads on the radio or to mark copyright infringement, or the automated creation of video summaries such as trailers.

    CSIRO

    This continued when I joined the CSIRO in Australia – I was working on segmenting speech into words or talk spurts since that would simplify captioning & subtitling, and on MPEG-7 which was a (slightly over-engineered) standard to structure metadata about audio and video.

    In 2001 I had the idea of replicating the Web for videos : i.e. creating hyperlinked and searchable video-only experiences. We called it “Annodex” for annotated and indexed video and it needed full-screen hyperlinked video in browsers – man were we ahead of our time ! It was my first step into standards, got several IETF RFCs to my name, and started my involvement with open codecs through Xiph.

    vquence logoAround the time that YouTube was founded in 2006, I founded Vquence – originally a video search company for the Web, but pivoted to a video metadata mining company. Vquence still exists and continues to sell its data to channel partners, but it lacks the user impact that has always driven my work.

    As the video element started being developed for HTML5, I had to get involved. I contributed many use cases to the W3C, became a co-editor of the HTML5 spec and focused on video captioning with WebVTT while contracting to Mozilla and later to Google. We made huge progress and today the technology exists to publish video on the Web with captions, making the Web more inclusive for everybody. I contributed code to YouTube and Google Chrome, but was keen to make a bigger impact again.

    NICTA logoThe opportunity came when a couple of former CSIRO colleagues who now worked for NICTA approached me to get me interested in addressing new use cases for video conferencing in the context of WebRTC. We worked on a kiosk-style solution to service delivery for large service organisations, particularly targeting government. The emerging WebRTC standard posed many technical challenges that we addressed by building rtc.io , by contributing to the standards, and registering bugs on the browsers.

    Fast-forward through the development of a few further custom solutions for customers in health and education and we are starting to see patterns of need emerge. The core learning that we’ve come away with is that to get things done, you have to go beyond “talking heads” in a video call. It’s not just about seeing the other person, but much more about having a shared view of the things that need to be worked on and a shared way of interacting with them. Also, we learnt that the things that are being worked on are quite varied and may include multiple input cameras, digital documents, Web pages, applications, device data, controls, forms.

    Coviu logoSo we set out to build a solution that would enable productive remote collaboration to take place. It would need to provide an excellent user experience, it would need to be simple to work with, provide for the standard use cases out of the box, yet be architected to be extensible for specialised data sharing needs that we knew some of our customers had. It would need to be usable directly on Coviu.com, but also able to integrate with specialised applications that some of our customers were already using, such as the applications that they spend most of their time in (CRMs, practice management systems, learning management systems, team chat systems). It would need to require our customers to sign up, yet their clients to join a call without sign-up.

    Collaboration is a big problem. People are continuing to get more comfortable with technology and are less and less inclined to travel distances just to get a service done. In a country as large as Australia, where 12% of the population lives in rural and remote areas, people may not even be able to travel distances, particularly to receive or provide recurring or specialised services, or to achieve work/life balance. To make the world a global village, we need to be able to work together better remotely.

    The need for collaboration is being recognised by specialised Web applications already, such as the LiveShare feature of Invision for Designers, Codassium for pair programming, or the recently announced Dropbox Paper. Few go all the way to video – WebRTC is still regarded as a complicated feature to support.

    Coviu in action

    With Coviu, we’d like to offer a collaboration feature to every Web app. We now have a Web app that provides a modern and beautifully designed collaboration interface. To enable other Web apps to integrate it, we are now developing an API. Integration may entail customisation of the data sharing part of Coviu – something Coviu has been designed for. How to replicate the data and keep it consistent when people collaborate remotely – that is where Coviu makes a difference.

    We have started our journey and have just launched free signup to the Coviu base product, which allows individuals to own their own “room” (i.e. a fixed URL) in which to collaborate with others. A huge shout out goes to everyone in the Coviu team – a pretty amazing group of people – who have turned the app from an idea to reality. You are all awesome !

    With Coviu you can share and annotate :

    • images (show your mum photos of your last holidays, or get feedback on an architecture diagram from a customer),
    • pdf files (give a presentation remotely, or walk a customer through a contract),
    • whiteboards (brainstorm with a colleague), and
    • share an application window (watch a YouTube video together, or work through your task list with your colleagues).

    All of these are regarded as “shared documents” in Coviu and thus have zooming and annotations features and are listed in a document tray for ease of navigation.

    This is just the beginning of how we want to make working together online more productive. Give it a go and let us know what you think.

    http://coviu.com/

    The post My journey to Coviu first appeared on ginger’s thoughts.