
Recherche avancée
Autres articles (41)
-
Websites made with MediaSPIP
2 mai 2011, parThis page lists some websites based on MediaSPIP.
-
Creating farms of unique websites
13 avril 2011, parMediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...) -
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir
Sur d’autres sites (6093)
-
pyqt5 gui dependent on ffmpeg compiled with pyinstaller doesn't run on other machines ?
19 octobre 2022, par SorenI am trying to create a simple Pyqt5 GUI for Windows 10 that uses OpenAI's model Whisper to transcribe a sound file and outputting the results in an Excel-file. It works on my own computer where I have installed the necessary dependencies for Whisper as stated on their github i.e. FFMEG. I provide a minimal example of my code below :


# Import library
import whisper
import os
from PyQt5 import QtCore, QtGui, QtWidgets
import pandas as pd
import xlsxwriter


class Ui_Dialog(QtWidgets.QDialog):
 
 
 # Define functions to use in GUI
 
 # Define function for selecting input files
 def browsefiles(self, Dialog):
 
 
 # Make Dialog box and save files into tuple of paths
 files = QtWidgets.QFileDialog().getOpenFileNames(self, "Select soundfiles", os.getcwd(), "lyd(*mp2 *.mp3 *.mp4 *.m4a *wma *wav)")
 
 self.liste = []
 for url in range(len(files[0])):
 self.liste.append(files[0][url]) 

 
 def model_load(self, Dialog):
 
 # Load picked model
 self.model = whisper.load_model(r'C:\Users\Søren\Downloads\Whisper_gui\models' + "\\" + self.combo_modelSize.currentText() + ".pt") ##the path is set to where the models are on the other machine
 
 
 def run(self, Dialog):
 
 # Make list for sound files
 liste_df = []
 
 
 # Running loop for interpreting and encoding sound files
 for url in range(len(self.liste)):
 
 # Make dataframe
 df = pd.DataFrame(columns=["filename", "start", "end", "text"])
 
 # Run model
 result = self.model.transcribe(self.liste[url])
 
 # Extract results
 for i in range(len(result["segments"])):
 start = result["segments"][i]["start"]
 end = result["segments"][i]["end"]
 text = result["segments"][i]["text"]
 
 df = df.append({"filename": self.liste[url].split("/")[-1],
 "start": start, 
 "end": end, 
 "text": text}, ignore_index=True)
 
 # Add detected language to dataframe
 df["sprog"] = result["language"]
 
 
 liste_df.append(df)
 
 
 
 # Make excel output
 
 # Concatenate list of dfs
 dataframe = pd.concat(liste_df)
 
 
 # Create a Pandas Excel writer using XlsxWriter as the engine.
 writer = pd.ExcelWriter(self.liste[0].split(".")[0] + '_OUTPUT.xlsx', engine='xlsxwriter')
 writer_wrap_format = writer.book.add_format({"text_wrap": True, 'num_format': '@'})


 # Write the dataframe data to XlsxWriter. Turn off the default header and
 # index and skip one row to allow us to insert a user defined header.
 dataframe.to_excel(writer, sheet_name="Output", startrow=1, header=False, index=False)

 # Get the xlsxwriter workbook and worksheet objects.
 #workbook = writer.book
 worksheet = writer.sheets["Output"]

 # Get the dimensions of the dataframe.
 (max_row, max_col) = dataframe.shape

 # Create a list of column headers, to use in add_table().
 column_settings = [{'header': column} for column in dataframe.columns]

 # Add the Excel table structure. Pandas will add the data.
 worksheet.add_table(0, 0, max_row, max_col - 1, {'columns': column_settings})

 # Make the columns wider for clarity.
 worksheet.set_column(0, max_col - 1, 12)
 
 in_col_no = xlsxwriter.utility.xl_col_to_name(dataframe.columns.get_loc("text"))
 
 worksheet.set_column(in_col_no + ":" + in_col_no, 30, writer_wrap_format)

 # Close the Pandas Excel writer and output the Excel file.
 writer.save()
 writer.close()
 
 
 ## Design setup
 
 def setupUi(self, Dialog):
 Dialog.setObjectName("Dialog")
 Dialog.resize(730, 400)
 
 self.select_files = QtWidgets.QPushButton(Dialog)
 self.select_files.setGeometry(QtCore.QRect(40, 62, 81, 31))
 font = QtGui.QFont()
 font.setPointSize(6)
 self.select_files.setFont(font)
 self.select_files.setObjectName("select_files")
 
 
 
 
 self.combo_modelSize = QtWidgets.QComboBox(Dialog)
 self.combo_modelSize.setGeometry(QtCore.QRect(40, 131, 100, 21))
 font = QtGui.QFont()
 font.setPointSize(6)
 self.combo_modelSize.setFont(font)
 self.combo_modelSize.setObjectName("combo_modelSize")
 
 
 self.runButton = QtWidgets.QPushButton(Dialog)
 self.runButton.setGeometry(QtCore.QRect(40, 289, 71, 21))
 font = QtGui.QFont()
 font.setPointSize(6)
 self.runButton.setFont(font)
 self.runButton.setObjectName("runButton")
 
 
 

 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)
 
 
 
 modelSize_options = ['Chose model', 'tiny', 'base', 'small', 'medium', 'large']
 self.combo_modelSize.addItems(modelSize_options)
 
 # Do an action!
 self.select_files.clicked.connect(self.browsefiles)
 self.combo_modelSize.currentIndexChanged.connect(self.model_load)
 self.runButton.clicked.connect(self.run)
 
 
 
 

 def retranslateUi(self, Dialog):
 _translate = QtCore.QCoreApplication.translate
 Dialog.setWindowTitle(_translate("Dialog", "Dialog"))
 self.runButton.setText(_translate("Dialog", "Go!"))
 self.select_files.setText(_translate("Dialog", "Select"))


if __name__ == "__main__":
 import sys
 app = QtWidgets.QApplication(sys.argv)
 Dialog = QtWidgets.QDialog()
 ui = Ui_Dialog()
 ui.setupUi(Dialog)
 Dialog.show()
 sys.exit(app.exec_())



I compile this app with pyinstaller using the following code. I had some issues to begin with so I found other with similar problems and ended up with this :


pyinstaller --onedir --hidden-import=pytorch --collect-data torch --copy-metadata torch --copy-metadata tqdm --copy-metadata tokenizers --copy-metadata importlib_metadata --hidden-import="sklearn.utils._cython_blas" --hidden-import="sklearn.neighbors.typedefs" --hidden-import="sklearn.neighbors.quad_tree" --hidden-import="sklearn.tree" --hidden-import="sklearn.tree._utils" --copy-metadata regex --copy-metadata requests --copy-metadata packaging --copy-metadata filelock --copy-metadata numpy --add-data "./ffmpeg/*;./ffmpeg/" --hidden-import=whisper --copy-metadata whisper --collect-data whisper minimal_example_whisper.py


When I take the outputtet dist directory and try to run the app on another Windows machine without FFMPEG installed (or Whisper or any other things), I get the following error from the terminal as I push the "run" button in the app (otherwise the app does run).


C:\Users\Søren>"G:\minimal_example_whisper\minimal_example_whisper.exe"
whisper\transcribe.py:70: UserWarning: FP16 is not supported on CPU; using FP32 instead
Traceback (most recent call last):
 File "minimal_example_whisper.py", line 45, in run
 File "whisper\transcribe.py", line 76, in transcribe
 File "whisper\audio.py", line 111, in log_mel_spectrogram
 File "whisper\audio.py", line 42, in load_audio
 File "ffmpeg\_run.py", line 313, in run
 File "ffmpeg\_run.py", line 284, in run_async
 File "subprocess.py", line 951, in __init__
 File "subprocess.py", line 1420, in _execute_child
FileNotFoundError: [WinError 2] Den angivne fil blev ikke fundet



I suspect this has something to do with FFMPEG not being installed on the other machines system ? Does anyone have an automatic solution for this when compiling the app or can it simply only run on machines that has FFMPEG installed ?


Thanks in advance !


-
Revision 30768 : Petites modifs
9 août 2009, par kent1@… — LogPetites modifs
-
Revision 33588 : un bouton vider devant la ligne vide de creation d’une RC
8 décembre 2009, par cedric@… — Logun bouton vider devant la ligne vide de creation d’une RC