Recherche avancée

Médias (91)

Autres articles (60)

  • List of compatible distributions

    26 avril 2011, par

    The table below is the list of Linux distributions compatible with the automated installation script of MediaSPIP. Distribution nameVersion nameVersion number Debian Squeeze 6.x.x Debian Weezy 7.x.x Debian Jessie 8.x.x Ubuntu The Precise Pangolin 12.04 LTS Ubuntu The Trusty Tahr 14.04
    If you want to help us improve this list, you can provide us access to a machine whose distribution is not mentioned above or send the necessary fixes to add (...)

  • Le profil des utilisateurs

    12 avril 2011, par

    Chaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
    L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)

  • Configurer la prise en compte des langues

    15 novembre 2010, par

    Accéder à la configuration et ajouter des langues prises en compte
    Afin de configurer la prise en compte de nouvelles langues, il est nécessaire de se rendre dans la partie "Administrer" du site.
    De là, dans le menu de navigation, vous pouvez accéder à une partie "Gestion des langues" permettant d’activer la prise en compte de nouvelles langues.
    Chaque nouvelle langue ajoutée reste désactivable tant qu’aucun objet n’est créé dans cette langue. Dans ce cas, elle devient grisée dans la configuration et (...)

Sur d’autres sites (4584)

  • Sequelize FFMPEG get video after upload on NodeJs

    30 juin 2020, par jjplack

    Hello After upload a video to db using sequelize, i would like to edit it using FFMPEG

    


    So to get the video is just point the model attribute to FFMPEG ?

    


    Because using the file path is not editing the video.

    


    For exemple :

    


    fastify.route({
    method: "POST",
    url: "/posts",
    preHandler: upload.single("video"),

    handler: async function(request, reply) {
      const { Post } = fastify.sequelize;

      const videoPath = "./public/uploads/";

 

     

      const post = await Post.create({
        video: request.file.path,
        title: request.body.title,
   
      });
      reply.code(201).send(post);


 

try {
   const process = new ffmpeg(post.video);
  process.then(function (video) {
    video.addCommand('-ss', '00:01:00')
    video.addCommand('-vframes', '1')
    video.save(videoPath, function (error, file) {
        if (!error)
          console.log('Video file: ' + file);
      });
  }, function (err) {
    console.log('Error: ' + err);
  });
} catch (e) {

  console.log(e.msg);

}
      
    }
  });


    


  • Efficient way to stream a sequence of frames

    3 juin 2020, par DoriHp 0

    I'm facing with an issue : I implemented a device to detect stranger for my home, which includes inputs from some IP camera and use a tensorflow model to process frame got from them.

    



    Now I want to build a dashboard (use Flask or Django - python framework as backend) to streaming the processed frames I got from the system, and if possible, do some transform on them (such as stack multi frames into one, etc), and run the server so I can watch it from distances. Currently, I'm sending frame by frame as independent images but it costs so much bandwidth. I read how h264 encoder work and felt very exicted about it. Now, the question is, how can I use h264 or any encoder like it transfer my data and reduce the bandwidth ?

    


  • dnn/native : add native support for divide

    11 avril 2020, par Guo, Yejun
    dnn/native : add native support for divide
    

    it can be tested with model file generated with below python script :
    import tensorflow as tf
    import numpy as np
    import imageio

    in_img = imageio.imread('input.jpg')
    in_img = in_img.astype(np.float32)/255.0
    in_data = in_img[np.newaxis, :]

    x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in')
    z1 = 2 / x
    z2 = 1 / z1
    z3 = z2 / 0.25 + 0.3
    z4 = z3 - x * 1.5 - 0.3
    y = tf.identity(z4, name='dnn_out')

    sess=tf.Session()
    sess.run(tf.global_variables_initializer())

    graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out'])
    tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False)

    print("image_process.pb generated, please use \
    path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n")

    output = sess.run(y, feed_dict=x : in_data)
    imageio.imsave("out.jpg", np.squeeze(output))

    Signed-off-by : Guo, Yejun <yejun.guo@intel.com>

    • [DH] libavfilter/dnn/dnn_backend_native_layer_mathbinary.c
    • [DH] libavfilter/dnn/dnn_backend_native_layer_mathbinary.h
    • [DH] tools/python/convert_from_tensorflow.py
    • [DH] tools/python/convert_header.py