Recherche avancée

Médias (91)

Autres articles (34)

  • Encoding and processing into web-friendly formats

    13 avril 2011, par

    MediaSPIP automatically converts uploaded files to internet-compatible formats.
    Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
    Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
    Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
    All uploaded files are stored online in their original format, so you can (...)

  • Emballe Médias : Mettre en ligne simplement des documents

    29 octobre 2010, par

    Le plugin emballe médias a été développé principalement pour la distribution mediaSPIP mais est également utilisé dans d’autres projets proches comme géodiversité par exemple. Plugins nécessaires et compatibles
    Pour fonctionner ce plugin nécessite que d’autres plugins soient installés : CFG Saisies SPIP Bonux Diogène swfupload jqueryui
    D’autres plugins peuvent être utilisés en complément afin d’améliorer ses capacités : Ancres douces Légendes photo_infos spipmotion (...)

  • Les formats acceptés

    28 janvier 2010, par

    Les commandes suivantes permettent d’avoir des informations sur les formats et codecs gérés par l’installation local de ffmpeg :
    ffmpeg -codecs ffmpeg -formats
    Les format videos acceptés en entrée
    Cette liste est non exhaustive, elle met en exergue les principaux formats utilisés : h264 : H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 m4v : raw MPEG-4 video format flv : Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Theora wmv :
    Les formats vidéos de sortie possibles
    Dans un premier temps on (...)

Sur d’autres sites (3852)

  • A Comprehensive Guide to Robust Digital Marketing Analytics

    30 octobre 2023, par Erin

    First impressions are everything. This is not only true for dating and job interviews but also for your digital marketing strategy. Like a poorly planned resume getting tossed in the “no thank you” pile, 38% of visitors to your website will stop engaging with your content if they find the layout unpleasant. Thankfully, digital marketers can access data that can be harnessed to optimise websites and turn those “no thank you’s” into “absolutely’s.”

    So, how can we transform raw data into valuable insights that pay off ? The key is web analytics tools that can help you make sense of it all while collecting data ethically. In this article, we’ll equip you with ways to take your digital marketing strategy to the next level with the power of web analytics.

    What are the different types of digital marketing analytics ?

    Digital marketing analytics are like a cipher into the complex behaviour of your buyers. Digital marketing analytics help collect, analyse and interpret data from any touchpoint you interact with your buyers online. Whether you’re trying to gauge the effectiveness of a new email marketing campaign or improve your mobile app layout, there’s a way for you to make use of the insights you gain. 

    As we go through the eight commonly known types of digital marketing analytics, please note we’ll primarily focus on what falls under the umbrella of web analytics. 

    1. Web analytics help you better understand how users interact with your website. Good web analytics tools will help you understand user behaviour while securely handling user data. 
    2. Learn more about the effectiveness of your organisation’s social media platforms with social media analytics. Social media analytics include user engagement, post reach and audience demographics. 
    3. Email marketing analytics help you see how email campaigns are being engaged with.
    4. Search engine optimisation (SEO) analytics help you understand your website’s visibility in search engine results pages (SERPs). 
    5. Pay-per-click (PPC) analytics measure the performance of paid advertising campaigns.
    6. Content marketing analytics focus on how your content is performing with your audience. 
    7. Customer analytics helps organisations identify and examine buyer behaviour to retain the biggest spenders. 
    8. Mobile app analytics track user interactions within mobile applications. 

    Choosing which digital marketing analytics tools are the best fit for your organisation is not an easy task. When making these decisions, it’s critical to remember the ethical implications of data collection. Although data insights can be invaluable to your organisation, they won’t be of much use if you lose the trust of your users. 

    Tips and best practices for developing robust digital marketing analytics 

    So, what separates top-notch, robust digital marketing analytics from the rest ? We’ve already touched on it, but a big part involves respecting user privacy and ethically handling data. Data security should be on your list of priorities, alongside conversion rate optimisation when developing a digital marketing strategy. In this section, we will examine best practices for using digital marketing analytics while retaining user trust.

    Lightbulb with a target in the center being struck by arrows

    Clear objectives

    Before comparing digital marketing analytics tools, you should define clear and measurable goals. Try asking yourself what you need your digital marketing analytics strategy to accomplish. Do you want to improve conversion rates while remaining data compliant ? Maybe you’ve noticed users are not engaging with your platform and want to fix that. Save yourself time and energy by focusing on the most relevant pain points and areas of improvement.

    Choose the right tools for the job

    Don’t just base your decision on what other people tell you. Take the tool for a test drive — free trials allow you to test features and user interfaces and learn more about the platform before committing. When choosing digital marketing analytics tools, look for ones that ensure compliance with privacy laws like GDPR.

    Don’t overlook data compliance

    GDPR ensures organisations prioritise data protection and privacy. You could be fined up to €20 million, or 4% of the previous year’s revenue for violations. Without data compliance practices, you can say goodbye to the time and money spent on digital marketing strategies. 

    Don’t sacrifice data quality and accuracy

    Inaccurate and low-quality data can taint your analysis, making it hard to glean valuable insights from your digital marketing analytics efforts. Regularly audit and clean your data to remove inaccuracies and inconsistencies. Address data discrepancies promptly to maintain the integrity of your analytics. Data validation measures also help to filter out inaccurate data.

    Communicate your findings

    Having insights is one thing ; effectively communicating complex data findings is just as important. Customise dashboards to display key metrics aligned with your objectives. Make sure to automate reports, allowing stakeholders to stay updated without manual intervention. 

    Understand the user journey

    To optimise your conversion rates, you need to understand the user journey. Start by analysing visitors interactions with your website — this will help you identify conversion bottlenecks in your sales or lead generation processes. Implement A/B testing for landing page optimisation, refining elements like call-to-action buttons or copy, and leverage Form Analytics to make informed, data-driven improvements to your forms.

    Continuous improvement

    Learn from the data insights you gain, and iterate your marketing strategies based on the findings. Stay updated with evolving web analytics trends and technologies to leverage new growth opportunities.

    Why you need web analytics to support your digital marketing analytics toolbox

    You wouldn’t set out on a roadtrip without a map, right ? Digital marketing analytics without insights into how users interact with your website are just as useless. Used ethically, web analytics tools can be an invaluable addition to your digital marketing analytics toolbox. 

    The data collected via web analytics reveals user interactions with your website. These could include anything from how long visitors stay on your page to their actions while browsing your website. Web analytics tools help you gather and understand this data so you can better understand buyer preferences. It’s like a domino effect : the more you understand your buyers and user behaviour, the better you can assess the effectiveness of your digital content and campaigns. 

    Web analytics reveal user behaviour, highlighting navigation patterns and drop-off points. Understanding these patterns helps you refine website layout and content, improving engagement and conversions for a seamless user experience.

    Magnifying glass examining various screens that contain data

    Concrete CMS harnessed the power of web analytics, specifically Form Analytics, to uncover a crucial insight within their user onboarding process. Their data revealed a significant issue : the “address” input field was causing visitors to drop off and not complete the form, severely impacting the overall onboarding experience and conversion rate.

    Armed with these insights, Concrete CMS made targeted optimisations to the form, resulting in a substantial transformation. By addressing the specific issue identified through Form Analytics, they achieved an impressive outcome – a threefold increase in lead generation.

    This case is a great example of how web analytics can uncover customer needs and preferences and positively impact conversion rates. 

    Ethical implications of digital marketing analytics

    As we’ve touched on, digital marketing analytics are a powerful tool to help better understand online user behaviour. With great power comes great responsibility, however, and it’s a legal and ethical obligation for organisations to protect individual privacy rights. Let’s get into the benefits of practising ethical digital marketing analytics and the potential risks of not respecting user privacy : 

    • If someone uses your digital platform and then opens their email one day to find it filled with random targeted ad campaigns, they won’t be happy. Avoid losing user trust — and facing a potential lawsuit — by informing users what their data will be used for. Give them the option to consent to opt-in or opt-out of letting you use their personal information. If users are also assured you’ll safeguard personal information against unauthorised access, they’ll be more likely to trust you to handle their data securely.
    • Protecting data against breaches means investing in technology that will let you end-to-end encrypt and securely store data. Other important data-security best practices include access control, backing up data regularly and network and physical security of assets.
    • A fine line separates digital marketing analytics and misusing user data — many companies have gotten into big trouble for crossing it. (By big trouble, we mean millions of dollars in fines.) When it comes to digital marketing analytics, you should never cut corners when it comes to user privacy and data security. This balance involves understanding what data can be collected and what should be collected and respecting user boundaries and preferences.

    Learn more 

    We discussed a lot of facets of digital marketing analytics, namely how to develop a robust digital marketing strategy while prioritising data compliance. With Matomo, you can protect user data and respect user privacy while gaining invaluable insights into user behaviour. Save your organisation time and money by investing in a web analytics solution that gives you the best of both worlds. 

    If you’re ready to begin using ethical and robust digital marketing analytics on your website, try Matomo. Start your 21-day free trial now — no credit card required.

  • What is a Cohort Report ? A Beginner’s Guide to Cohort Analysis

    3 janvier 2024, par Erin

    Handling your user data as a single mass of numbers is rarely conducive to figuring out meaningful patterns you can use to improve your marketing campaigns.

    A cohort report (or cohort analysis) can help you quickly break down that larger audience into sequential segments and contrast and compare based on various metrics. As such, it is a great tool for unlocking more granular trends and insights — for example, identifying patterns in engagement and conversions based on the date users first interacted with your site.

    In this guide, we explain the basics of the cohort report and the best way to set one up to get the most out of it.

    What is a cohort report ?

    In a cohort report, you divide a data set into groups based on certain criteria — typically a time-based cohort metric like first purchase date — and then analyse the data across those segments, looking for patterns.

    Date-based cohort analysis is the most common approach, often creating cohorts based on the day a user completed a particular action — signed up, purchased something or visited your website. Depending on the metric you choose to measure (like return visits), the cohort report might look something like this :

    Example of a basic cohort report

    Note that this is not a universal benchmark or anything of the sort. The above is a theoretical cohort analysis based on app users who downloaded the app, tracking and comparing the retention rates as the days go by. 

    The benchmarks will be drastically different depending on the metric you’re measuring and the basis for your cohorts. For example, if you’re measuring returning visitor rates among first-time visitors to your website, expect single-digit percentages even on the second day.

    Your industry will also greatly affect what you consider positive in a cohort report. For example, if you’re a subscription SaaS, you’d expect high continued usage rates over the first week. If you sell office supplies to companies, much less so.

    What is an example of a cohort ?

    As we just mentioned, a typical cohort analysis separates users or customers by the date they first interacted with your business — in this case, they downloaded your app. Within that larger analysis, the users who downloaded it on May 3 represent a single cohort.

    Illustration of a specific cohort

    In this case, we’ve chosen behaviour and time — the app download day — to separate the user base into cohorts. That means every specific day denotes a specific cohort within the analysis.

    Diving deeper into an individual cohort may be a good idea for important holidays or promotional events like Black Friday.

    Of course, cohorts don’t have to be based on specific behaviour within certain periods. You can also create cohorts based on other dimensions :

    • Transactional data — revenue per user
    • Churn data — date of churn
    • Behavioural cohort — based on actions taken on your website, app or e-commerce store, like the number of sessions per user or specific product pages visited
    • Acquisition cohort — which channel referred the user or customer

    For more information on different cohort types, read our in-depth guide on cohort analysis.

    How to create a cohort report (and make sense of it)

    Matomo makes it easy to view and analyse different cohorts (without the privacy and legal implications of using Google Analytics).

    Here are a few different ways to set up a cohort report in Matomo, starting with our built-in cohorts report.

    Cohort reports

    With Matomo, cohort reports are automatically compiled based on the first visit date. The default metric is the percentage of returning visitors.

    Screenshot of the cohorts report in Matomo analytics

    Changing the settings allows you to create multiple variations of cohort analysis reports.

    Break down cohorts by different metrics

    The percentage of returning visits can be valuable if you’re trying to improve early engagement in a SaaS app onboarding process. But it’s far from your only option.

    You can also compare performance by conversion, revenue, bounce rate, actions per visit, average session duration or other metrics.

    Cohort metric options in Matomo analytics

    Change the time and scope of your cohort analysis

    Splitting up cohorts by single days may be useless if you don’t have a high volume of users or visitors. If the average cohort size is only a few users, you won’t be able to identify reliable patterns. 

    Matomo lets you set any time period to create your cohort analysis report. Instead of the most recent days, you can create cohorts by week, month, year or custom date ranges. 

    Date settings in the cohorts report in Matomo analytics

    Cohort sizes will depend on your customer base. Make sure each cohort is large enough to encapsulate all the customers in that cohort and not so small that you have insignificant cohorts of only a few customers. Choose a date range that gives you that without scaling it too far so you can’t identify any seasonal trends.

    Cohort analysis can be a great tool if you’ve recently changed your marketing, product offering or onboarding. Set the data range to weekly and look for any impact in conversions and revenue after the changes.

    Using the “compare to” feature, you can also do month-over-month, quarter-over-quarter or any custom date range comparisons. This approach can help you get a rough overview of your campaign’s long-term progress without doing any in-depth analysis.

    You can also use the same approach to compare different holiday seasons against each other.

    If you want to combine time cohorts with segmentation, you can run cohort reports for different subsets of visitors instead of all visitors. This can lead to actionable insights like adjusting weekend or specific seasonal promotions to improve conversion rates.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Easily create custom cohort reports beyond the time dimension

    If you want to split your audience into cohorts by focusing on something other than time, you will need to create a custom report and choose another dimension. In Matomo, you can choose from a wide range of cohort metrics, including referrers, e-commerce signals like viewed product or product category, form submissions and more.

    Custom report options in Matomo

    Then, you can create a simple table-based report with all the insights you need by choosing the metrics you want to see. For example, you could choose average visit duration, bounce rate and other usage metrics.

    Metrics selected in a Matomo custom report

    If you want more revenue-focused insights, add metrics like conversions, add-to-cart and other e-commerce events.

    Custom reports make it easy to create cohort reports for almost any dimension. You can use any metric within demographic and behavioural analytics to create a cohort. (You can explore the complete list of our possible segmentation metrics.)

    We cover different types of custom reports (and ideas for specific marketing campaigns) in our guide on custom segmentation.

    Create your first cohort report and gain better insights into your visitors

    Cohort reports can help you identify trends and the impact of short-term marketing efforts like events and promotions.

    With Matomo cohort reports you have the power to create complex custom reports for various cohorts and segments. 

    If you’re looking for a powerful, easy-to-use web analytics solution that gives you 100% accurate data without compromising your users’ privacy, Matomo is a great fit. Get started with a 21-day free trial today. No credit card required. 

  • FFMPEG Output File is Empty Nothing was Encoded (for a Picture) ?

    4 mars 2023, par Sarah Szabo

    I have a strange issue effecting one of my programs that does bulk media conversions using ffmpeg from the command line, however this effects me using it directly from the shell as well :

    


    ffmpeg -i INPUT.mkv -ss 0:30 -y -qscale:v 2 -frames:v 1 -f image2 -huffman optimal "OUTPUT.png"
fails every run with the error message :
Output file is empty, nothing was encoded (check -ss / -t / -frames parameters if used)

    


    This only happens with very specific videos, and seemingly no other videos. File type is usually .webm. These files have been downloaded properly (usually from yt-dlp), and I have tried re-downloading them just to verify their integrity.

    


    One such file from a colleague was : https://www.dropbox.com/s/xkucr2z5ra1p2oh/Triggerheart%20Execlica%20OST%20%28Arrange%29%20-%20Crueltear%20Ending.mkv?dl=0

    


    Is there a subtle issue with the command string ?

    


    Notes :

    


    removing -huffman optimal had no effect

    


    moving -ss to before -i had no effect

    


    removing -f image2 had no effect

    


    Full Log :

    


    sarah@MidnightStarSign:~/Music/Playlists/Indexing/Indexing Temp$ ffmpeg -i Triggerheart\ Execlica\ OST\ \(Arrange\)\ -\ Crueltear\ Ending.mkv -ss 0:30 -y -qscale:v 2 -frames:v 1 -f image2 -huffman optimal "TEST.png"
ffmpeg version n5.1.2 Copyright (c) 2000-2022 the FFmpeg developers
  built with gcc 12.2.0 (GCC)
  configuration: --prefix=/usr --disable-debug --disable-static --disable-stripping --enable-amf --enable-avisynth --enable-cuda-llvm --enable-lto --enable-fontconfig --enable-gmp --enable-gnutls --enable-gpl --enable-ladspa --enable-libaom --enable-libass --enable-libbluray --enable-libbs2b --enable-libdav1d --enable-libdrm --enable-libfreetype --enable-libfribidi --enable-libgsm --enable-libiec61883 --enable-libjack --enable-libmfx --enable-libmodplug --enable-libmp3lame --enable-libopencore_amrnb --enable-libopencore_amrwb --enable-libopenjpeg --enable-libopus --enable-libpulse --enable-librav1e --enable-librsvg --enable-libsoxr --enable-libspeex --enable-libsrt --enable-libssh --enable-libsvtav1 --enable-libtheora --enable-libv4l2 --enable-libvidstab --enable-libvmaf --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxcb --enable-libxml2 --enable-libxvid --enable-libzimg --enable-nvdec --enable-nvenc --enable-opencl --enable-opengl --enable-shared --enable-version3 --enable-vulkan
  libavutil      57. 28.100 / 57. 28.100
  libavcodec     59. 37.100 / 59. 37.100
  libavformat    59. 27.100 / 59. 27.100
  libavdevice    59.  7.100 / 59.  7.100
  libavfilter     8. 44.100 /  8. 44.100
  libswscale      6.  7.100 /  6.  7.100
  libswresample   4.  7.100 /  4.  7.100
  libpostproc    56.  6.100 / 56.  6.100
[matroska,webm @ 0x55927f484740] Could not find codec parameters for stream 2 (Attachment: none): unknown codec
Consider increasing the value for the 'analyzeduration' (0) and 'probesize' (5000000) options
Input #0, matroska,webm, from 'Triggerheart Execlica OST (Arrange) - Crueltear Ending.mkv':
  Metadata:
    title           : TriggerHeart Exelica PS2 & 360 Arrange ー 16 - Crueltear Ending
    PURL            : https://www.youtube.com/watch?v=zJ0bEa_8xEg
    COMMENT         : https://www.youtube.com/watch?v=zJ0bEa_8xEg
    ARTIST          : VinnyVynce
    DATE            : 20170905
    ENCODER         : Lavf59.27.100
  Duration: 00:00:30.00, start: -0.007000, bitrate: 430 kb/s
  Stream #0:0(eng): Video: vp9 (Profile 0), yuv420p(tv, bt709), 720x720, SAR 1:1 DAR 1:1, 25 fps, 25 tbr, 1k tbn (default)
    Metadata:
      DURATION        : 00:00:29.934000000
  Stream #0:1(eng): Audio: opus, 48000 Hz, stereo, fltp (default)
    Metadata:
      DURATION        : 00:00:30.001000000
  Stream #0:2: Attachment: none
    Metadata:
      filename        : cover.webp
      mimetype        : image/webp
Codec AVOption huffman (Huffman table strategy) specified for output file #0 (TEST.png) has not been used for any stream. The most likely reason is either wrong type (e.g. a video option with no video streams) or that it is a private option of some encoder which was not actually used for any stream.
Stream mapping:
  Stream #0:0 -> #0:0 (vp9 (native) -> png (native))
Press [q] to stop, [?] for help
Output #0, image2, to 'TEST.png':
  Metadata:
    title           : TriggerHeart Exelica PS2 & 360 Arrange ー 16 - Crueltear Ending
    PURL            : https://www.youtube.com/watch?v=zJ0bEa_8xEg
    COMMENT         : https://www.youtube.com/watch?v=zJ0bEa_8xEg
    ARTIST          : VinnyVynce
    DATE            : 20170905
    encoder         : Lavf59.27.100
  Stream #0:0(eng): Video: png, rgb24, 720x720 [SAR 1:1 DAR 1:1], q=2-31, 200 kb/s, 25 fps, 25 tbn (default)
    Metadata:
      DURATION        : 00:00:29.934000000
      encoder         : Lavc59.37.100 png
frame=    0 fps=0.0 q=0.0 Lsize=N/A time=00:00:00.00 bitrate=N/A speed=   0x    
video:0kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: unknown
Output file is empty, nothing was encoded (check -ss / -t / -frames parameters if used)


    


    Manjaro OS System Specs :

    


    System:&#xA;  Kernel: 6.1.12-1-MANJARO arch: x86_64 bits: 64 compiler: gcc v: 12.2.1&#xA;    parameters: BOOT_IMAGE=/@/boot/vmlinuz-6.1-x86_64&#xA;    root=UUID=f11386cf-342d-47ac-84e6-484b7b2f377d rw rootflags=subvol=@&#xA;    radeon.modeset=1 nvdia-drm.modeset=1 quiet&#xA;    cryptdevice=UUID=059df4b4-5be4-44d6-a23a-de81135eb5b4:luks-disk&#xA;    root=/dev/mapper/luks-disk apparmor=1 security=apparmor&#xA;    resume=/dev/mapper/luks-swap udev.log_priority=3&#xA;  Desktop: KDE Plasma v: 5.26.5 tk: Qt v: 5.15.8 wm: kwin_x11 vt: 1 dm: SDDM&#xA;    Distro: Manjaro Linux base: Arch Linux&#xA;Machine:&#xA;  Type: Desktop Mobo: ASUSTeK model: PRIME X570-PRO v: Rev X.0x&#xA;    serial: <superuser required="required"> UEFI: American Megatrends v: 4408&#xA;    date: 10/27/2022&#xA;Battery:&#xA;  Message: No system battery data found. Is one present?&#xA;Memory:&#xA;  RAM: total: 62.71 GiB used: 27.76 GiB (44.3%)&#xA;  RAM Report: permissions: Unable to run dmidecode. Root privileges required.&#xA;CPU:&#xA;  Info: model: AMD Ryzen 9 5950X bits: 64 type: MT MCP arch: Zen 3&#x2B; gen: 4&#xA;    level: v3 note: check built: 2022 process: TSMC n6 (7nm) family: 0x19 (25)&#xA;    model-id: 0x21 (33) stepping: 0 microcode: 0xA201016&#xA;  Topology: cpus: 1x cores: 16 tpc: 2 threads: 32 smt: enabled cache:&#xA;    L1: 1024 KiB desc: d-16x32 KiB; i-16x32 KiB L2: 8 MiB desc: 16x512 KiB&#xA;    L3: 64 MiB desc: 2x32 MiB&#xA;  Speed (MHz): avg: 4099 high: 4111 min/max: 2200/6358 boost: disabled&#xA;    scaling: driver: acpi-cpufreq governor: schedutil cores: 1: 4099 2: 4095&#xA;    3: 4102 4: 4100 5: 4097 6: 4100 7: 4110 8: 4111 9: 4083 10: 4099 11: 4100&#xA;    12: 4094 13: 4097 14: 4101 15: 4100 16: 4099 17: 4100 18: 4097 19: 4098&#xA;    20: 4095 21: 4100 22: 4099 23: 4099 24: 4105 25: 4098 26: 4100 27: 4100&#xA;    28: 4092 29: 4103 30: 4101 31: 4100 32: 4099 bogomips: 262520&#xA;  Flags: 3dnowprefetch abm adx aes aperfmperf apic arat avic avx avx2 bmi1&#xA;    bmi2 bpext cat_l3 cdp_l3 clflush clflushopt clwb clzero cmov cmp_legacy&#xA;    constant_tsc cpb cpuid cqm cqm_llc cqm_mbm_local cqm_mbm_total&#xA;    cqm_occup_llc cr8_legacy cx16 cx8 de decodeassists erms extapic&#xA;    extd_apicid f16c flushbyasid fma fpu fsgsbase fsrm fxsr fxsr_opt ht&#xA;    hw_pstate ibpb ibrs ibs invpcid irperf lahf_lm lbrv lm mba mca mce&#xA;    misalignsse mmx mmxext monitor movbe msr mtrr mwaitx nonstop_tsc nopl npt&#xA;    nrip_save nx ospke osvw overflow_recov pae pat pausefilter pclmulqdq&#xA;    pdpe1gb perfctr_core perfctr_llc perfctr_nb pfthreshold pge pku pni popcnt&#xA;    pse pse36 rapl rdpid rdpru rdrand rdseed rdt_a rdtscp rep_good sep sha_ni&#xA;    skinit smap smca smep ssbd sse sse2 sse4_1 sse4_2 sse4a ssse3 stibp succor&#xA;    svm svm_lock syscall tce topoext tsc tsc_scale umip v_spec_ctrl&#xA;    v_vmsave_vmload vaes vgif vmcb_clean vme vmmcall vpclmulqdq wbnoinvd wdt&#xA;    x2apic xgetbv1 xsave xsavec xsaveerptr xsaveopt xsaves&#xA;  Vulnerabilities:&#xA;  Type: itlb_multihit status: Not affected&#xA;  Type: l1tf status: Not affected&#xA;  Type: mds status: Not affected&#xA;  Type: meltdown status: Not affected&#xA;  Type: mmio_stale_data status: Not affected&#xA;  Type: retbleed status: Not affected&#xA;  Type: spec_store_bypass mitigation: Speculative Store Bypass disabled via&#xA;    prctl&#xA;  Type: spectre_v1 mitigation: usercopy/swapgs barriers and __user pointer&#xA;    sanitization&#xA;  Type: spectre_v2 mitigation: Retpolines, IBPB: conditional, IBRS_FW,&#xA;    STIBP: always-on, RSB filling, PBRSB-eIBRS: Not affected&#xA;  Type: srbds status: Not affected&#xA;  Type: tsx_async_abort status: Not affected&#xA;Graphics:&#xA;  Device-1: NVIDIA GA104 [GeForce RTX 3070] vendor: ASUSTeK driver: nvidia&#xA;    v: 525.89.02 alternate: nouveau,nvidia_drm non-free: 525.xx&#x2B;&#xA;    status: current (as of 2023-02) arch: Ampere code: GAxxx&#xA;    process: TSMC n7 (7nm) built: 2020-22 pcie: gen: 4 speed: 16 GT/s lanes: 8&#xA;    link-max: lanes: 16 bus-ID: 0b:00.0 chip-ID: 10de:2484 class-ID: 0300&#xA;  Device-2: AMD Cape Verde PRO [Radeon HD 7750/8740 / R7 250E]&#xA;    vendor: VISIONTEK driver: radeon v: kernel alternate: amdgpu arch: GCN-1&#xA;    code: Southern Islands process: TSMC 28nm built: 2011-20 pcie: gen: 3&#xA;    speed: 8 GT/s lanes: 8 link-max: lanes: 16 ports: active: DP-3,DP-4&#xA;    empty: DP-1, DP-2, DP-5, DP-6 bus-ID: 0c:00.0 chip-ID: 1002:683f&#xA;    class-ID: 0300 temp: 54.0 C&#xA;  Device-3: Microdia USB 2.0 Camera type: USB driver: snd-usb-audio,uvcvideo&#xA;    bus-ID: 9-2:3 chip-ID: 0c45:6367 class-ID: 0102 serial: <filter>&#xA;  Display: x11 server: X.Org v: 21.1.7 with: Xwayland v: 22.1.8&#xA;    compositor: kwin_x11 driver: X: loaded: modesetting,nvidia dri: radeonsi&#xA;    gpu: radeon display-ID: :0 screens: 1&#xA;  Screen-1: 0 s-res: 5760x2160 s-dpi: 80 s-size: 1829x686mm (72.01x27.01")&#xA;    s-diag: 1953mm (76.91")&#xA;  Monitor-1: DP-1 pos: 1-2 res: 1920x1080 dpi: 93&#xA;    size: 527x296mm (20.75x11.65") diag: 604mm (23.8") modes: N/A&#xA;  Monitor-2: DP-1-3 pos: 2-1 res: 1920x1080 dpi: 82&#xA;    size: 598x336mm (23.54x13.23") diag: 686mm (27.01") modes: N/A&#xA;  Monitor-3: DP-1-4 pos: 1-1 res: 1920x1080 dpi: 93&#xA;    size: 527x296mm (20.75x11.65") diag: 604mm (23.8") modes: N/A&#xA;  Monitor-4: DP-3 pos: primary,2-2 res: 1920x1080 dpi: 82&#xA;    size: 598x336mm (23.54x13.23") diag: 686mm (27.01") modes: N/A&#xA;  Monitor-5: DP-4 pos: 2-4 res: 1920x1080 dpi: 82&#xA;    size: 598x336mm (23.54x13.23") diag: 686mm (27.01") modes: N/A&#xA;  Monitor-6: HDMI-0 pos: 1-3 res: 1920x1080 dpi: 93&#xA;    size: 527x296mm (20.75x11.65") diag: 604mm (23.8") modes: N/A&#xA;  API: OpenGL v: 4.6.0 NVIDIA 525.89.02 renderer: NVIDIA GeForce RTX&#xA;    3070/PCIe/SSE2 direct-render: Yes&#xA;Audio:&#xA;  Device-1: NVIDIA GA104 High Definition Audio vendor: ASUSTeK&#xA;    driver: snd_hda_intel bus-ID: 5-1:2 v: kernel chip-ID: 30be:1019 pcie:&#xA;    class-ID: 0102 gen: 4 speed: 16 GT/s lanes: 8 link-max: lanes: 16&#xA;    bus-ID: 0b:00.1 chip-ID: 10de:228b class-ID: 0403&#xA;  Device-2: AMD Oland/Hainan/Cape Verde/Pitcairn HDMI Audio [Radeon HD 7000&#xA;    Series] vendor: VISIONTEK driver: snd_hda_intel v: kernel pcie: gen: 3&#xA;    speed: 8 GT/s lanes: 8 link-max: lanes: 16 bus-ID: 0c:00.1&#xA;    chip-ID: 1002:aab0 class-ID: 0403&#xA;  Device-3: AMD Starship/Matisse HD Audio vendor: ASUSTeK&#xA;    driver: snd_hda_intel v: kernel pcie: gen: 4 speed: 16 GT/s lanes: 16&#xA;    bus-ID: 0e:00.4 chip-ID: 1022:1487 class-ID: 0403&#xA;  Device-4: Schiit Audio Unison Universal Dac type: USB driver: snd-usb-audio&#xA;  Device-5: JMTek LLC. Plugable USB Audio Device type: USB&#xA;    driver: hid-generic,snd-usb-audio,usbhid bus-ID: 5-2:3 chip-ID: 0c76:120b&#xA;    class-ID: 0300 serial: <filter>&#xA;  Device-6: ASUSTek ASUS AI Noise-Cancelling Mic Adapter type: USB&#xA;    driver: hid-generic,snd-usb-audio,usbhid bus-ID: 5-4:4 chip-ID: 0b05:194e&#xA;    class-ID: 0300 serial: <filter>&#xA;  Device-7: Microdia USB 2.0 Camera type: USB driver: snd-usb-audio,uvcvideo&#xA;    bus-ID: 9-2:3 chip-ID: 0c45:6367 class-ID: 0102 serial: <filter>&#xA;  Sound API: ALSA v: k6.1.12-1-MANJARO running: yes&#xA;  Sound Interface: sndio v: N/A running: no&#xA;  Sound Server-1: PulseAudio v: 16.1 running: no&#xA;  Sound Server-2: PipeWire v: 0.3.65 running: yes&#xA;Network:&#xA;  Device-1: Intel I211 Gigabit Network vendor: ASUSTeK driver: igb v: kernel&#xA;    pcie: gen: 1 speed: 2.5 GT/s lanes: 1 port: f000 bus-ID: 07:00.0&#xA;    chip-ID: 8086:1539 class-ID: 0200&#xA;  IF: enp7s0 state: up speed: 1000 Mbps duplex: full mac: <filter>&#xA;  IP v4: <filter> type: dynamic noprefixroute scope: global&#xA;    broadcast: <filter>&#xA;  IP v6: <filter> type: noprefixroute scope: link&#xA;  IF-ID-1: docker0 state: down mac: <filter>&#xA;  IP v4: <filter> scope: global broadcast: <filter>&#xA;  WAN IP: <filter>&#xA;Bluetooth:&#xA;  Device-1: Cambridge Silicon Radio Bluetooth Dongle (HCI mode) type: USB&#xA;    driver: btusb v: 0.8 bus-ID: 5-5.3:7 chip-ID: 0a12:0001 class-ID: e001&#xA;  Report: rfkill ID: hci0 rfk-id: 0 state: up address: see --recommends&#xA;Logical:&#xA;  Message: No logical block device data found.&#xA;  Device-1: luks-c847cf9f-c6b5-4624-a25e-4531e318851a maj-min: 254:2&#xA;    type: LUKS dm: dm-2 size: 3.64 TiB&#xA;  Components:&#xA;  p-1: sda1 maj-min: 8:1 size: 3.64 TiB&#xA;  Device-2: luks-swap maj-min: 254:1 type: LUKS dm: dm-1 size: 12 GiB&#xA;  Components:&#xA;  p-1: nvme0n1p2 maj-min: 259:2 size: 12 GiB&#xA;  Device-3: luks-disk maj-min: 254:0 type: LUKS dm: dm-0 size: 919.01 GiB&#xA;  Components:&#xA;  p-1: nvme0n1p3 maj-min: 259:3 size: 919.01 GiB&#xA;RAID:&#xA;  Message: No RAID data found.&#xA;Drives:&#xA;  Local Storage: total: 9.1 TiB used: 2.79 TiB (30.6%)&#xA;  SMART Message: Unable to run smartctl. Root privileges required.&#xA;  ID-1: /dev/nvme0n1 maj-min: 259:0 vendor: Western Digital&#xA;    model: WDS100T3X0C-00SJG0 size: 931.51 GiB block-size: physical: 512 B&#xA;    logical: 512 B speed: 31.6 Gb/s lanes: 4 type: SSD serial: <filter>&#xA;    rev: 111110WD temp: 53.9 C scheme: GPT&#xA;  ID-2: /dev/nvme1n1 maj-min: 259:4 vendor: Western Digital&#xA;    model: WDS100T2B0C-00PXH0 size: 931.51 GiB block-size: physical: 512 B&#xA;    logical: 512 B speed: 31.6 Gb/s lanes: 4 type: SSD serial: <filter>&#xA;    rev: 211070WD temp: 46.9 C scheme: GPT&#xA;  ID-3: /dev/sda maj-min: 8:0 vendor: Western Digital&#xA;    model: WD4005FZBX-00K5WB0 size: 3.64 TiB block-size: physical: 4096 B&#xA;    logical: 512 B speed: 6.0 Gb/s type: HDD rpm: 7200 serial: <filter>&#xA;    rev: 1A01 scheme: GPT&#xA;  ID-4: /dev/sdb maj-min: 8:16 vendor: Western Digital&#xA;    model: WD4005FZBX-00K5WB0 size: 3.64 TiB block-size: physical: 4096 B&#xA;    logical: 512 B speed: 6.0 Gb/s type: HDD rpm: 7200 serial: <filter>&#xA;    rev: 1A01 scheme: GPT&#xA;  ID-5: /dev/sdc maj-min: 8:32 type: USB vendor: SanDisk&#xA;    model: Gaming Xbox 360 size: 7.48 GiB block-size: physical: 512 B&#xA;    logical: 512 B type: N/A serial: <filter> rev: 8.02 scheme: MBR&#xA;  SMART Message: Unknown USB bridge. Flash drive/Unsupported enclosure?&#xA;  Message: No optical or floppy data found.&#xA;Partition:&#xA;  ID-1: / raw-size: 919.01 GiB size: 919.01 GiB (100.00%)&#xA;    used: 611.14 GiB (66.5%) fs: btrfs dev: /dev/dm-0 maj-min: 254:0&#xA;    mapped: luks-disk label: N/A uuid: N/A&#xA;  ID-2: /boot/efi raw-size: 512 MiB size: 511 MiB (99.80%)&#xA;    used: 40.2 MiB (7.9%) fs: vfat dev: /dev/nvme0n1p1 maj-min: 259:1 label: EFI&#xA;    uuid: 8922-E04D&#xA;  ID-3: /home raw-size: 919.01 GiB size: 919.01 GiB (100.00%)&#xA;    used: 611.14 GiB (66.5%) fs: btrfs dev: /dev/dm-0 maj-min: 254:0&#xA;    mapped: luks-disk label: N/A uuid: N/A&#xA;  ID-4: /run/media/sarah/ConvergentRefuge raw-size: 3.64 TiB&#xA;    size: 3.64 TiB (100.00%) used: 2.19 TiB (60.1%) fs: btrfs dev: /dev/dm-2&#xA;    maj-min: 254:2 mapped: luks-c847cf9f-c6b5-4624-a25e-4531e318851a&#xA;    label: ConvergentRefuge uuid: 7d295e73-4143-4eb1-9d22-75a06b1d2984&#xA;  ID-5: /run/media/sarah/MSS_EXtended raw-size: 475.51 GiB&#xA;    size: 475.51 GiB (100.00%) used: 1.48 GiB (0.3%) fs: btrfs&#xA;    dev: /dev/nvme1n1p1 maj-min: 259:5 label: MSS EXtended&#xA;    uuid: f98b3a12-e0e4-48c7-91c2-6e3aa6dcd32c&#xA;Swap:&#xA;  Kernel: swappiness: 60 (default) cache-pressure: 100 (default)&#xA;  ID-1: swap-1 type: partition size: 12 GiB used: 6.86 GiB (57.2%)&#xA;    priority: -2 dev: /dev/dm-1 maj-min: 254:1 mapped: luks-swap label: SWAP&#xA;    uuid: c8991364-85a7-4e6c-8380-49cd5bd7a873&#xA;Unmounted:&#xA;  ID-1: /dev/nvme1n1p2 maj-min: 259:6 size: 456 GiB fs: ntfs label: N/A&#xA;    uuid: 5ECA358FCA356485&#xA;  ID-2: /dev/sdb1 maj-min: 8:17 size: 3.64 TiB fs: ntfs&#xA;    label: JerichoVariance uuid: 1AB22D5664889CBD&#xA;  ID-3: /dev/sdc1 maj-min: 8:33 size: 3.57 GiB fs: iso9660&#xA;  ID-4: /dev/sdc2 maj-min: 8:34 size: 4 MiB fs: vfat label: MISO_EFI&#xA;    uuid: 5C67-4BF8&#xA;USB:&#xA;  Hub-1: 1-0:1 info: Hi-speed hub with single TT ports: 4 rev: 2.0&#xA;    speed: 480 Mb/s chip-ID: 1d6b:0002 class-ID: 0900&#xA;  Hub-2: 1-2:2 info: Hitachi ports: 4 rev: 2.1 speed: 480 Mb/s&#xA;    chip-ID: 045b:0209 class-ID: 0900&#xA;  Device-1: 1-2.4:3 info: Microsoft Xbox One Controller (Firmware 2015)&#xA;    type: <vendor specific="specific"> driver: xpad interfaces: 3 rev: 2.0 speed: 12 Mb/s&#xA;    power: 500mA chip-ID: 045e:02dd class-ID: ff00 serial: <filter>&#xA;  Hub-3: 2-0:1 info: Super-speed hub ports: 4 rev: 3.0 speed: 5 Gb/s&#xA;    chip-ID: 1d6b:0003 class-ID: 0900&#xA;  Hub-4: 2-2:2 info: Hitachi ports: 4 rev: 3.0 speed: 5 Gb/s&#xA;    chip-ID: 045b:0210 class-ID: 0900&#xA;  Hub-5: 3-0:1 info: Hi-speed hub with single TT ports: 1 rev: 2.0&#xA;    speed: 480 Mb/s chip-ID: 1d6b:0002 class-ID: 0900&#xA;  Hub-6: 3-1:2 info: VIA Labs Hub ports: 4 rev: 2.1 speed: 480 Mb/s&#xA;    power: 100mA chip-ID: 2109:3431 class-ID: 0900&#xA;  Hub-7: 3-1.2:3 info: VIA Labs VL813 Hub ports: 4 rev: 2.1 speed: 480 Mb/s&#xA;    chip-ID: 2109:2813 class-ID: 0900&#xA;  Hub-8: 4-0:1 info: Super-speed hub ports: 4 rev: 3.0 speed: 5 Gb/s&#xA;    chip-ID: 1d6b:0003 class-ID: 0900&#xA;  Hub-9: 4-2:2 info: VIA Labs VL813 Hub ports: 4 rev: 3.0 speed: 5 Gb/s&#xA;    chip-ID: 2109:0813 class-ID: 0900&#xA;  Hub-10: 5-0:1 info: Hi-speed hub with single TT ports: 6 rev: 2.0&#xA;    speed: 480 Mb/s chip-ID: 1d6b:0002 class-ID: 0900&#xA;  Device-1: 5-1:2 info: Schiit Audio Unison Universal Dac type: Audio&#xA;    driver: snd-usb-audio interfaces: 2 rev: 2.0 speed: 480 Mb/s power: 500mA&#xA;    chip-ID: 30be:1019 class-ID: 0102&#xA;  Device-2: 5-2:3 info: JMTek LLC. Plugable USB Audio Device type: Audio,HID&#xA;    driver: hid-generic,snd-usb-audio,usbhid interfaces: 4 rev: 1.1&#xA;    speed: 12 Mb/s power: 100mA chip-ID: 0c76:120b class-ID: 0300&#xA;    serial: <filter>&#xA;  Device-3: 5-4:4 info: ASUSTek ASUS AI Noise-Cancelling Mic Adapter&#xA;    type: Audio,HID driver: hid-generic,snd-usb-audio,usbhid interfaces: 4&#xA;    rev: 1.1 speed: 12 Mb/s power: 100mA chip-ID: 0b05:194e class-ID: 0300&#xA;    serial: <filter>&#xA;  Hub-11: 5-5:5 info: Genesys Logic Hub ports: 4 rev: 2.0 speed: 480 Mb/s&#xA;    power: 100mA chip-ID: 05e3:0608 class-ID: 0900&#xA;  Device-1: 5-5.3:7 info: Cambridge Silicon Radio Bluetooth Dongle (HCI mode)&#xA;    type: Bluetooth driver: btusb interfaces: 2 rev: 2.0 speed: 12 Mb/s&#xA;    power: 100mA chip-ID: 0a12:0001 class-ID: e001&#xA;  Hub-12: 5-6:6 info: Genesys Logic Hub ports: 4 rev: 2.0 speed: 480 Mb/s&#xA;    power: 100mA chip-ID: 05e3:0608 class-ID: 0900&#xA;  Hub-13: 6-0:1 info: Super-speed hub ports: 4 rev: 3.1 speed: 10 Gb/s&#xA;    chip-ID: 1d6b:0003 class-ID: 0900&#xA;  Hub-14: 7-0:1 info: Hi-speed hub with single TT ports: 6 rev: 2.0&#xA;    speed: 480 Mb/s chip-ID: 1d6b:0002 class-ID: 0900&#xA;  Device-1: 7-2:2 info: SanDisk Cruzer Micro Flash Drive type: Mass Storage&#xA;    driver: usb-storage interfaces: 1 rev: 2.0 speed: 480 Mb/s power: 200mA&#xA;    chip-ID: 0781:5151 class-ID: 0806 serial: <filter>&#xA;  Device-2: 7-4:3 info: ASUSTek AURA LED Controller type: HID&#xA;    driver: hid-generic,usbhid interfaces: 2 rev: 2.0 speed: 12 Mb/s power: 16mA&#xA;    chip-ID: 0b05:18f3 class-ID: 0300 serial: <filter>&#xA;  Hub-15: 8-0:1 info: Super-speed hub ports: 4 rev: 3.1 speed: 10 Gb/s&#xA;    chip-ID: 1d6b:0003 class-ID: 0900&#xA;  Hub-16: 9-0:1 info: Hi-speed hub with single TT ports: 4 rev: 2.0&#xA;    speed: 480 Mb/s chip-ID: 1d6b:0002 class-ID: 0900&#xA;  Hub-17: 9-1:2 info: Terminus FE 2.1 7-port Hub ports: 7 rev: 2.0&#xA;    speed: 480 Mb/s power: 100mA chip-ID: 1a40:0201 class-ID: 0900&#xA;  Device-1: 9-1.1:4 info: Sunplus Innovation Gaming mouse [Philips SPK9304]&#xA;    type: Mouse driver: hid-generic,usbhid interfaces: 1 rev: 2.0 speed: 1.5 Mb/s&#xA;    power: 98mA chip-ID: 1bcf:08a0 class-ID: 0301&#xA;  Device-2: 9-1.5:6 info: Microdia Backlit Gaming Keyboard&#xA;    type: Keyboard,Mouse driver: hid-generic,usbhid interfaces: 2 rev: 2.0&#xA;    speed: 12 Mb/s power: 400mA chip-ID: 0c45:652f class-ID: 0301&#xA;  Device-3: 9-1.6:7 info: HUION H420 type: Mouse,HID driver: uclogic,usbhid&#xA;    interfaces: 3 rev: 1.1 speed: 12 Mb/s power: 100mA chip-ID: 256c:006e&#xA;    class-ID: 0300&#xA;  Hub-18: 9-1.7:8 info: Terminus Hub ports: 4 rev: 2.0 speed: 480 Mb/s&#xA;    power: 100mA chip-ID: 1a40:0101 class-ID: 0900&#xA;  Device-1: 9-2:3 info: Microdia USB 2.0 Camera type: Video,Audio&#xA;    driver: snd-usb-audio,uvcvideo interfaces: 4 rev: 2.0 speed: 480 Mb/s&#xA;    power: 500mA chip-ID: 0c45:6367 class-ID: 0102 serial: <filter>&#xA;  Device-2: 9-4:11 info: VKB-Sim &#xA9; Alex Oz 2021 VKBsim Gladiator EVO L&#xA;    type: HID driver: hid-generic,usbhid interfaces: 1 rev: 2.0 speed: 12 Mb/s&#xA;    power: 500mA chip-ID: 231d:0201 class-ID: 0300&#xA;  Hub-19: 10-0:1 info: Super-speed hub ports: 4 rev: 3.1 speed: 10 Gb/s&#xA;    chip-ID: 1d6b:0003 class-ID: 0900&#xA;Sensors:&#xA;  System Temperatures: cpu: 38.0 C mobo: 41.0 C&#xA;  Fan Speeds (RPM): fan-1: 702 fan-2: 747 fan-3: 938 fan-4: 889 fan-5: 3132&#xA;    fan-6: 0 fan-7: 0&#xA;  GPU: device: nvidia screen: :0.0 temp: 49 C fan: 0% device: radeon&#xA;    temp: 53.0 C&#xA;Info:&#xA;  Processes: 842 Uptime: 3h 11m wakeups: 0 Init: systemd v: 252&#xA;  default: graphical tool: systemctl Compilers: gcc: 12.2.1 alt: 10/11&#xA;  clang: 15.0.7 Packages: 2158 pm: pacman pkgs: 2110 libs: 495 tools: pamac,yay&#xA;  pm: flatpak pkgs: 31 pm: snap pkgs: 17 Shell: Bash v: 5.1.16&#xA;  running-in: yakuake inxi: 3.3.25&#xA;</filter></filter></filter></filter></filter></filter></vendor></filter></filter></filter></filter></filter></filter></filter></filter></filter></filter></filter></filter></filter></filter></filter></filter></filter></superuser>

    &#xA;