Recherche avancée

Médias (91)

Autres articles (56)

  • Qualité du média après traitement

    21 juin 2013, par

    Le bon réglage du logiciel qui traite les média est important pour un équilibre entre les partis ( bande passante de l’hébergeur, qualité du média pour le rédacteur et le visiteur, accessibilité pour le visiteur ). Comment régler la qualité de son média ?
    Plus la qualité du média est importante, plus la bande passante sera utilisée. Le visiteur avec une connexion internet à petit débit devra attendre plus longtemps. Inversement plus, la qualité du média est pauvre et donc le média devient dégradé voire (...)

  • Le profil des utilisateurs

    12 avril 2011, par

    Chaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
    L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)

  • Configurer la prise en compte des langues

    15 novembre 2010, par

    Accéder à la configuration et ajouter des langues prises en compte
    Afin de configurer la prise en compte de nouvelles langues, il est nécessaire de se rendre dans la partie "Administrer" du site.
    De là, dans le menu de navigation, vous pouvez accéder à une partie "Gestion des langues" permettant d’activer la prise en compte de nouvelles langues.
    Chaque nouvelle langue ajoutée reste désactivable tant qu’aucun objet n’est créé dans cette langue. Dans ce cas, elle devient grisée dans la configuration et (...)

Sur d’autres sites (2050)

  • i am getting when i am trying to run Ffmpegrabberframe on alpine image [closed]

    18 mars 2020, par avinash tiwari

    # # A fatal error has been detected by the Java Runtime Environment :

    # SIGSEGV (0xb) at pc=0x000000000000dc56, pid=446, tid=0x00007fd3c478db20 # # JRE version : OpenJDK Runtime Environment

    (8.0_242-b08) (build 1.8.0_242-b08) # Java VM : OpenJDK 64-Bit Server
    VM (25.242-b08 mixed mode linux-amd64 compressed oops) # Derivative :
    IcedTea 3.15.0 # Distribution : Custom build (Wed Jan 29 10:43:50 UTC
    2020) # Problematic frame : # C 0x000000000000dc56 # # Failed to
    write core dump. Core dumps have been disabled. To enable core
    dumping, try "ulimit -c unlimited" before starting Java again # # An
    error report file with more information is saved as : #
    /builds/had/tip/asset-delivery/firstgen-ingestion---backend/hs_err_pid446.log

    # If you would like to submit a bug report, please include # instructions on how to reproduce the bug and visit : #

    https://icedtea.classpath.org/bugzilla # Exception in thread
    "Thread-8" java.io.EOFException at
    java.io.ObjectInputStream$BlockDataInputStream.peekByte(ObjectInputStream.java:3015)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1576)
    at java.io.ObjectInputStream.readObject(ObjectInputStream.java:465)
    at java.io.ObjectInputStream.readObject(ObjectInputStream.java:423)
    at
    org.scalatest.tools.Framework$ScalaTestRunner$Skeleton$1$React.react(Framework.scala:818)
    at
    org.scalatest.tools.Framework$ScalaTestRunner$Skeleton$1.run(Framework.scala:807)

    def extractAVI(rawDrivePath: String): List[String] = {
       var errorList: List[String] = List.empty
       FileUtils.listFiles(new File(rawDrivePath), new SuffixFileFilter(".avi"), TrueFileFilter.INSTANCE)
         .asScala.toList.foreach(aviFile => {
         var grabber: FFmpegFrameGrabber = null
         var aviStream: InputStream = null
         var isFailedExtraction: Boolean = false
         try {
           LOGGER.info(s"--------inside try----------${aviFile.getAbsolutePath}")
           aviStream = new FileInputStream(aviFile.getAbsolutePath)
           LOGGER.info("--------create grabber----------")
           grabber = new FFmpegFrameGrabber(aviStream)
           LOGGER.info("--------created grabber extraction of drives----------")
           grabber.start()
           LOGGER.info("--------start grabber of drives----------")
           var count: Int = 1
           for (frame <- Iterator.continually(grabber.grabImage()).takeWhile(_ != null)) {
             ImageIO.write(converter.convert(frame), "jpg", new File(aviFile.getParent, "capture-" + count + ".jpg"))
             count += 1
           }
           grabber.stop()
         } catch {
           case ex: Exception => {
             LOGGER.info(s"Error while extracting images for ${aviFile.getAbsolutePath} {}", ex)
             errorList :+= s"${aviFile.getAbsolutePath.replace(rawDrivePath, "")} -> ${ex.getMessage}"
             isFailedExtraction = true
             LOGGER.info("last inside catch")
           }
         } finally {
           // Close the video file
           LOGGER.info(s"inside finally ")
           if (grabber != null)
             grabber.release()
           if (aviStream != null)
             aviStream.close()
           if (aviFile.exists() && !isFailedExtraction) {
             LOGGER.debug(s"Deleting ${aviFile.getAbsolutePath}")
             FileUtils.deleteQuietly(aviFile)
           }
         }
       })
  • Stopping Referrer Spam

    13 mai 2015, par Piwik Core Team — Community

    In this blog post we explain what is Referrer spam, this new kind of spam that has recently appeared on the Internet. We also provide solutions to stop it and preserve the quality of your analytics data.

    What is Referrer Spam ?

    Referrer spam (also known as log spam or referrer bombing) is a kind of spamming aimed at web analytics tools. A spammer bot makes repeated web site requests using a fake referrer URL to the site the spammer wishes to advertise.

    Here is an example of referrer spam in action :

    An example of referrer spam

    Half of those referrers are spams, here are some well know spammers that you may have seen in your logs : buttons-for-you-website.com, best-seo-offer.com, semalt.com

    The benefit for spammers is that their website will appear in analytics tools like Piwik or Google Analytics :

    • public analytics reports (or logs) will be indexed by search engines : links to the spammer’s website will improve its ranking
    • curious webmasters are likely to visit their referrers, thus bringing traffic to the spammer’s website

    How to deal with Referrer Spam ?

    Referrer spam is still new and analytics tools are all handling it differently.

    Referrer Spam in Piwik

    At Piwik we started working on mitigating Referrer spam more than a year ago. If you use Piwik and keep it up to date, you do not need to do anything.

    Referrer spammers are automatically excluded from your reports to keep your data clean and useful.

    New spammers are continuously detected and added to Piwik’s blacklist on each update. If you find a new spammer in your analytics data, you can even report it so that it is added to the Piwik’s open referrer blacklist and blocked for everyone.

    Referrer Spam in Google Analytics

    Google Analytics doesn’t offer any spam protection by default. It can however be configured manually using a custom Filter.

    To create a filter in Google Analytics go to the Admin section and click on All Filters. Create a new custom filter that excludes based on the Campaign Source field. In the Filter pattern enter the spammers domains you want to exclude (this is a regular expression) :

    Configuring a referrer spam filter in Google Analytics

    If new spammers arise you will need to update this list. You can also use Piwik’s referrer blacklist to exclude all the spammers currently detected.

    Other Analytics Tools

    Many web analytics tools do not yet handle Referrer spam and when using these tools, you will often find a lot of spam data in your Referrer Websites analytics reports.

    If you use an analytics tool that does not exclude Referrer spam, we recommend to contact the vendor and ask them to implement a mechanism to remove these referrer spammers. As of today many analytics vendors still have not mitigated this issue.

    Public List of Referrer Spammers

    At Piwik with the help of our large community we have decided to tackle this growing spam issue. We have created a list of up to date referrer spammers that anyone can edit.

    The list is available in a simple text file on Github : github.com/piwik/referrer-spam-blacklist.

    The list is released under the Public Domain and anyone can use it within their applications to exclude referrer spammers.

    Many people have already contributed new spammers to the list. We invite you to use the list in your apps and websites and help us keep the list up to date !

    Let’s unite and fight the spammers together.

    Happy Analytics !

  • Stopping Referrer Spam

    13 mai 2015, par Piwik Core Team — Community

    In this blog post we explain what is Referrer spam, this new kind of spam that has recently appeared on the Internet. We also provide solutions to stop it and preserve the quality of your analytics data.

    What is Referrer Spam ?

    Referrer spam (also known as log spam or referrer bombing) is a kind of spamming aimed at web analytics tools. A spammer bot makes repeated web site requests using a fake referrer URL to the site the spammer wishes to advertise.

    Here is an example of referrer spam in action :

    An example of referrer spam

    Half of those referrers are spams, here are some well know spammers that you may have seen in your logs : buttons-for-you-website.com, best-seo-offer.com, semalt.com

    The benefit for spammers is that their website will appear in analytics tools like Piwik or Google Analytics :

    • public analytics reports (or logs) will be indexed by search engines : links to the spammer’s website will improve its ranking
    • curious webmasters are likely to visit their referrers, thus bringing traffic to the spammer’s website

    How to deal with Referrer Spam ?

    Referrer spam is still new and analytics tools are all handling it differently.

    Referrer Spam in Piwik

    At Piwik we started working on mitigating Referrer spam more than a year ago. If you use Piwik and keep it up to date, you do not need to do anything.

    Referrer spammers are automatically excluded from your reports to keep your data clean and useful.

    New spammers are continuously detected and added to Piwik’s blacklist on each update. If you find a new spammer in your analytics data, you can even report it so that it is added to the Piwik’s open referrer blacklist and blocked for everyone.

    Referrer Spam in Google Analytics

    Google Analytics doesn’t offer any spam protection by default. It can however be configured manually using a custom Filter.

    To create a filter in Google Analytics go to the Admin section and click on All Filters. Create a new custom filter that excludes based on the Campaign Source field. In the Filter pattern enter the spammers domains you want to exclude (this is a regular expression) :

    Configuring a referrer spam filter in Google Analytics

    If new spammers arise you will need to update this list. You can also use Piwik’s referrer blacklist to exclude all the spammers currently detected.

    Other Analytics Tools

    Many web analytics tools do not yet handle Referrer spam and when using these tools, you will often find a lot of spam data in your Referrer Websites analytics reports.

    If you use an analytics tool that does not exclude Referrer spam, we recommend to contact the vendor and ask them to implement a mechanism to remove these referrer spammers. As of today many analytics vendors still have not mitigated this issue.

    Public List of Referrer Spammers

    At Piwik with the help of our large community we have decided to tackle this growing spam issue. We have created a list of up to date referrer spammers that anyone can edit.

    The list is available in a simple text file on Github : github.com/piwik/referrer-spam-blacklist.

    The list is released under the Public Domain and anyone can use it within their applications to exclude referrer spammers.

    Many people have already contributed new spammers to the list. We invite you to use the list in your apps and websites and help us keep the list up to date !

    Let’s unite and fight the spammers together.

    Happy Analytics !