Recherche avancée

Médias (91)

Autres articles (48)

  • Emballe Médias : Mettre en ligne simplement des documents

    29 octobre 2010, par

    Le plugin emballe médias a été développé principalement pour la distribution mediaSPIP mais est également utilisé dans d’autres projets proches comme géodiversité par exemple. Plugins nécessaires et compatibles
    Pour fonctionner ce plugin nécessite que d’autres plugins soient installés : CFG Saisies SPIP Bonux Diogène swfupload jqueryui
    D’autres plugins peuvent être utilisés en complément afin d’améliorer ses capacités : Ancres douces Légendes photo_infos spipmotion (...)

  • Websites made ​​with MediaSPIP

    2 mai 2011, par

    This page lists some websites based on MediaSPIP.

  • Creating farms of unique websites

    13 avril 2011, par

    MediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
    This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...)

Sur d’autres sites (9118)

  • Easy Tricks for Finding WebM Videos in YouTube

    9 août 2010, par noreply@blogger.com (John Luther)

    Since the WebM project launch, YouTube has been encoding videos uploaded at 720p or higher resolution in the WebM format. Today, the one million most popular videos of any size on YouTube are also available in the WebM format.

    We have instructions on our project site for finding these videos but they require adding a special parameter onto the end of each search query. All of the browsers that support WebM can create search shortcuts with custom parameters, however, so we’ve compiled instructions for making it very simple to search for WebM videos in YouTube.

    Important : First, make sure you have a supported browser and are enrolled in the YouTube HTML5 beta by going to http://youtube.com/html5 and clicking Enter the HTML5 Beta.

    Creating a WebM Search Shortcut

    Firefox 4 Beta :

    1. Select Bookmarks > Organize Bookmarks. A bookmark manager dialog opens.
    2. In the left column, choose a location for the new bookmark you’re creating. Next, choose Organize > New Bookmark (on MacOS click the gear icon). The new bookmark dialog opens.
    3. In the Name box, type WebM.
    4. In the Location box, type http://youtube.com/results?search_query=%s&webm=1.
    5. In the Keyword box, type webm.
    6. Click Add.

    Google Chrome Early Release Channel :

    1. On Windows and Linux, click the Chrome wrench icon in the toolbar and select Options. On MacOS, select Chrome > Preferences.
    2. On the Basics tab, click the Manage button in the Default Search section.
    3. On Windows and Linux, click Add. On MacOS X, click the plus (+) button.
    4. In the Name box, type WebM.
    5. In the Keyword box, type webm.
    6. In the URL box, type http://youtube.com/results?search_query=%s&webm=1.
    7. Click OK.

    Opera 10.60 and later :

    1. Go to http://youtube.com.
    2. Right-click in the YouTube search box at the top of the page and select Create Search. On MacOS, use Ctrl+click if you don’t a secondary mouse button enabled.
    3. In the Name box, type WebM.
    4. In the Keyword box, type webm.
    5. In the Address box, type http://youtube.com/results?search_query=%s&webm=1.
    6. Click OK.


    Now you’re ready to search. In the location box of the browser, type webm monster trucks. The YouTube search results page will open with a selection of monster truck videos encoded in the WebM format. When watching a video, look for the HTML5 WebM indicator in the player control bar.

    If you can’t find WebM videos it is most likely a browser cookie problem. Your enrollment in the YouTube HTML5 beta test is stored in a browser cookie (not in your YouTube or Google account), and that cookie can expire. Visit http://youtube.com/html5 and opt-in again to re-set the cookie.

    Directly Accessing WebM Videos by URL

    To find out if any YouTube video is available in WebM, simply add &html5=True (make sure True is capitalized) to the end of the video URL. If there is a WebM version of the video, it will open instead of the Flash version. For example :

  • An introduction to reverse engineering

    22 janvier 2011

    (This blog is still in hibernation, but I needed somewhere to post this)

    Reverse engineering is one of those wonderful topics, covering everything from simple "guess how this program works" problem solving, to poking at silicon with scanning electron microscopes. I’m always hugely fascinated by articles that walk through the steps involved in these types of activities, so I thought I’d contribute one back to the world.

    In this case, I’m going to be looking at the export bundle format created by the Tandberg Content Server, a device for recording video conferences. The bundle is intended for moving recordings between Tandberg devices, but it’s also the easiest way to get all of the related assets for a recorded conference. Unfortunately, there’s no parser available to take the bundle files (.tcb) and output the component pieces. Well, that just won’t do.

    For this type of reverse engineering, I basically want to learn enough about the TCB format to be able to parse out the individual files within it. The only tools I’ll need in this process are a hex editor, a notepad, and a way to convert between hex and decimal (the OS X calculator will do fine if you’re not the type to do it in your head).

    Step 1 : Basic Research
    After Googling around to see if this was a solved issue, I decided to dive into the format. I brought a sample bundle into my trusty hex editor (in this case Hex Fiend).

    1-1.jpg

    A few things are immediately obvious. First, we see the first four bytes are the letters TCSB. Another quick visit to Google confirms this header type isn’t found elsewhere, and there’s essentially no discussion of it. Going a few bytes further, we see "contents.xml." And a few bytes after that, we see what looks like plaintext XML. This is a pretty good clue that the TCB file consists of a . Let’s scan a bit further and see if we can confirm that.
    1-2.jpg
    In this segment, we see the end of the XML, and something that could be another filename - "dbtransfer" - followed by what looks like gibberish. That doesn’t help too much. Let’s keep looking.
    1-3.jpg
    Great - a .jpg ! Looking a bit further, we see the letters "JFIF," which is recognizable as part of a JPEG header. If you weren’t already familiar with that, a quick google for "jpg hex header" would clear up any confusion. So, we’ve got the basics of the file format down, but we’ll need a little bit more information if we’re going to write a parser.

    Step 2 : Finding the pattern
    We can make an educated guess that a file like this has to provide a few hints to a decoder. We would either expect a table of contents, describing where in the bundle each individual file was located, some sort of stop bit marking the boundary between files, byte offsets describing the locations of files, or a listing of file lengths.

    There isn’t any sign of a table of contents. Let’s start looking for a stop bit, as that would make writing our parser really easy. Want I’m going to do is pull out all of the data between two prospective files, and I want two sets to compare.
    I’ve placed asterisks to flag the bytes corresponding to the filenames, since those are known.

    1E D1 70 4C 25 06 36 4D 42 E9 65 6A 9F 5D 88 38 0A 00 *64 62 74 72 61 6E 73 66 65 72* 42 06 ED 48 0B 50 0A C4 14 D6 63 42 F2 BF E3 9D 20 29 00 00 00 00 00 00 DE E5 FD

    01 0C 00 *63 6F 6E 74 65 6E 74 73 2E 78 6D 6C* 9E 0E FE D3 C9 3A 3A 85 F4 E4 22 FE D0 21 DC D7 53 03 00 00 00 00 00 00

    The first line corresponds to the "dbtransfer" entry, the second to the "contents.xml" entry. Let’s trim the first entry to match the second.

    38 0A 00 *64 62 74 72 61 6E 73 66 65 72* 42 06 ED 48 0B 50 0A C4 14 D6 63 42 F2 BF E3 9D 20 29 00 00 00 00 00 00

    01 0C 00 *63 6F 6E 74 65 6E 74 73 2E 78 6D 6C* 9E 0E FE D3 C9 3A 3A 85 F4 E4 22 FE D0 21 DC D7 53 03 00 00 00 00 00 00

    It looks like we’ve got three bytes before the filename, followed by 18 bytes, followed by six bytes of zero. Unfortunately, there’s no obvious pattern of bits which would correspond to a "break" between segments. However, looking at those first three bytes, we see a 0x0A, and a 0x0C, two small values in the same place. 10 and 12. Interesting - the 12 entry corresponds with "contents.xml" and the 10 entry corresponds with "dbtransfer". Could that byte describe the length of the filename ? Let’s look at our much longer JPG entry to be sure.

    70 4A 00 *77 77 77 5C 73 6C 69 64 65 73 5C 64 37 30 64 35 34 63 66 2D 32 39 35 62 2D 34 31 34 63 2D 61 38 64 66 2D 32 66 37 32 64 66 33 30 31 31 35 65 5C 74 68 75 6D 62 6E 61 69 6C 73 5C 74 68 75 6D 62 6E 61 69 6C 30 30 2E 6A 70 67*

    0x4A - 74, corresponding to a 74 character filename. Looks like we’re in business.

    At this point, it’s worth an aside to talk about endianness. I happen to know that the Tandberg Content Server runs Windows on Intel, so I went into this with the assumption that the format was little-endian. However, if you’re not sure, it’s always worth looking at words backwards and forwards, just in case.

    So we know how to find our filename. Now how do we find our file data ? Let’s go back to our JPEG. We know that JPEGs start with 0xFFD8FFE0, and a quick trip to Google also tells us that they end with 0xFFD9. We can use that to pull a sample jpeg out of our TCB, save it to disk, and confirm that we’re on the right track.
    2-2.jpg

    This is one of those great steps in reverse engineering - concrete proof that you’re on the right track. Everything seems to go quicker from this point on.

    So, we know we’ve got a JPEG file in a continuous 2177 byte segment. We know that the format used byte lengths to describe filenames - maybe it also uses byte lengths to describe file lengths. Let’s look for 2177, or 0x8108, near our JPEG.

    2-3.jpg

    Well, that’s a good sign. But, it could be coincidental, so at this point we’d want to check a few other files to be sure. In fact, looking further in some file, we find some larger .mp4 files which don’t quite match our guess. It turns out that file length is a 32bit value, not a 16bit value - with our two jpegs, the larger bytes just happened to be zeros.

    Step 3 : Writing a parser

    "Bbbbbut...", I hear you say ! "You have all these chunks of data you don’t understand !"

    True enough, but all I care about is getting the files out, with the proper names. I don’t care about creation dates, file permissions, or any of the other crud that this file format likely contains.

    3-1.jpg

    Let’s look at the first two files in this bundle. A little bit of byte counting shows us the pattern that we can follow. We’ll treat the first file as a special case. After that, we seek 16 bytes from the end of file data to find the filename length (2 bytes), then we’re at the filename, then we seek 16 bytes to find the file length (4 bytes) and seek another 4 bytes to find the start of the file data. Rinse, repeat.

    I wrote a quick parser in PHP, since the eventual use for this information is part of a larger PHP-based application, but any language with basic raw file handling would work just as well.

    tcsParser.txt
    This was about the simplest possible type of reverse engineering - we had known data in an unknown format, without any compression or encryption. It only gets harder from here...

  • Revision 3fd6d813f9d3c63eac50aa5ffb3475e576042f73 : Quand suhosin empêche des valeurs de variables GET de plus de 512 ...

    4 mars 2010, par Matthieu Marcillaud — Log

    Quand suhosin empêche des valeurs de variables GET de plus de 512 caractères, il arrive que les contextes des paginations ajax soient impossibles à retrouver. Dans l’attente d’une solution idéale, voici une constante _CACHE_CONTEXTES_AJAX, qui, définie à true force le stockage de ces valeurs de (...)