Recherche avancée

Médias (91)

Autres articles (111)

  • Ajouter des informations spécifiques aux utilisateurs et autres modifications de comportement liées aux auteurs

    12 avril 2011, par

    La manière la plus simple d’ajouter des informations aux auteurs est d’installer le plugin Inscription3. Il permet également de modifier certains comportements liés aux utilisateurs (référez-vous à sa documentation pour plus d’informations).
    Il est également possible d’ajouter des champs aux auteurs en installant les plugins champs extras 2 et Interface pour champs extras.

  • Script d’installation automatique de MediaSPIP

    25 avril 2011, par

    Afin de palier aux difficultés d’installation dues principalement aux dépendances logicielles coté serveur, un script d’installation "tout en un" en bash a été créé afin de faciliter cette étape sur un serveur doté d’une distribution Linux compatible.
    Vous devez bénéficier d’un accès SSH à votre serveur et d’un compte "root" afin de l’utiliser, ce qui permettra d’installer les dépendances. Contactez votre hébergeur si vous ne disposez pas de cela.
    La documentation de l’utilisation du script d’installation (...)

  • Librairies et binaires spécifiques au traitement vidéo et sonore

    31 janvier 2010, par

    Les logiciels et librairies suivantes sont utilisées par SPIPmotion d’une manière ou d’une autre.
    Binaires obligatoires FFMpeg : encodeur principal, permet de transcoder presque tous les types de fichiers vidéo et sonores dans les formats lisibles sur Internet. CF ce tutoriel pour son installation ; Oggz-tools : outils d’inspection de fichiers ogg ; Mediainfo : récupération d’informations depuis la plupart des formats vidéos et sonores ;
    Binaires complémentaires et facultatifs flvtool2 : (...)

Sur d’autres sites (8903)

  • VP8 : a retrospective

    13 juillet 2010, par Dark Shikari — DCT, VP8, speed

    I’ve been working the past few weeks to help finish up the ffmpeg VP8 decoder, the first community implementation of On2′s VP8 video format. Now that I’ve written a thousand or two lines of assembly code and optimized a good bit of the C code, I’d like to look back at VP8 and comment on a variety of things — both good and bad — that slipped the net the first time, along with things that have changed since the time of that blog post.

    These are less-so issues related to compression — that issue has been beaten to death, particularly in MSU’s recent comparison, where x264 beat the crap out of VP8 and the VP8 developers pulled a Pinocchio in the developer comments. But that was expected and isn’t particularly interesting, so I won’t go into that. VP8 doesn’t have to be the best in the world in order to be useful.

    When the ffmpeg VP8 decoder is complete (just a few more asm functions to go), we’ll hopefully be able to post some benchmarks comparing it to libvpx.

    1. The spec, er, I mean, bitstream guide.

    Google has reneged on their claim that a spec existed at all and renamed it a “bitstream guide”. This is probably after it was found that — not merely was it incomplete — but at least a dozen places in the spec differed wildly from what was actually in their own encoder and decoder software ! The deblocking filter, motion vector clamping, probability tables, and many more parts simply disagreed flat-out with the spec. Fortunately, Ronald Bultje, one of the main authors of the ffmpeg VP8 decoder, is rather skilled at reverse-engineering, so we were able to put together a matching implementation regardless.

    Most of the differences aren’t particularly important — they don’t have a huge effect on compression or anything — but make it vastly more difficult to implement a “working” VP8 decoder, or for that matter, decide what “working” really is. For example, Google’s decoder will, if told to “swap the ALT and GOLDEN reference frames”, overwrite both with GOLDEN, because it first sets GOLDEN = ALT, and then sets ALT = GOLDEN. Is this a bug ? Or is this how it’s supposed to work ? It’s hard to tell — there isn’t a spec to say so. Google says that whatever libvpx does is right, but I doubt they intended this.

    I expect a spec will eventually be written, but it was a bit obnoxious of Google — both to the community and to their own developers — to release so early that they didn’t even have their own documentation ready.

    2. The TM intra prediction mode.

    One thing I glossed over in the original piece was that On2 had added an extra intra prediction mode to the standard batch that H.264 came with — they replaced Planar with “TM pred”. For i4x4, which didn’t have a Planar mode, they just added it without replacing an old one, resulting in a total of 10 modes to H.264′s 9. After understanding and writing assembly code for TM pred, I have to say that it is quite a cool idea. Here’s how it works :

    1. Let us take a block of size 4×4, 8×8, or 16×16.

    2. Define the pixels bordering the top of this block (starting from the left) as T[0], T[1], T[2]…

    3. Define the pixels bordering the left of this block (starting from the top) as L[0], L[1], L[2]…

    4. Define the pixel above the top-left of the block as TL.

    5. Predict every pixel <X,Y> in the block to be equal to clip3( T[X] + L[Y] – TL, 0, 255).

    It’s effectively a generalization of gradient prediction to the block level — predict each pixel based on the gradient between its top and left pixels, and the topleft. According to the VP8 devs, it’s chosen by the encoder quite a lot of the time, which isn’t surprising ; it seems like a pretty good idea. As just one more intra pred mode, it’s not going to do magic for compression, but it’s a cool idea and elegantly simple.

    3. Performance and the deblocking filter.

    On2 advertised for quite some that VP8′s goal was to be significantly faster to decode than H.264. When I saw the spec, I waited for the punchline, but apparently they were serious. There’s nothing wrong with being of similar speed or a bit slower — but I was rather confused as to the fact that their design didn’t match their stated goal at all. What apparently happened is they had multiple profiles of VP8 — high and low complexity profiles. They marketed the performance of the low complexity ones while touting the quality of the high complexity ones, a tad dishonest. More importantly though, practically nobody is using the low complexity modes, so anyone writing a decoder has to be prepared to handle the high complexity ones, which are the default.

    The primary time-eater here is the deblocking filter. VP8, being an H.264 derivative, has much the same problem as H.264 does in terms of deblocking — it spends an absurd amount of time there. As I write this post, we’re about to finish some of the deblocking filter asm code, but before it’s committed, up to 70% or more of total decoding time is spent in the deblocking filter ! Like H.264, it suffers from the 4×4 transform problem : a 4×4 transform requires a total of 8 length-16 and 8 length-8 loopfilter calls per macroblock, while Theora, with only an 8×8 transform, requires half that.

    This problem is aggravated in VP8 by the fact that the deblocking filter isn’t strength-adaptive ; if even one 4×4 block in a macroblock contains coefficients, every single edge has to be deblocked. Furthermore, the deblocking filter itself is quite complicated ; the “inner edge” filter is a bit more complex than H.264′s and the “macroblock edge” filter is vastly more complicated, having two entirely different codepaths chosen on a per-pixel basis. Of course, in SIMD, this means you have to do both and mask them together at the end.

    There’s nothing wrong with a good-but-slow deblocking filter. But given the amount of deblocking one needs to do in a 4×4-transform-based format, it might have been a better choice to make the filter simpler. It’s pretty difficult to beat H.264 on compression, but it’s certainly not hard to beat it on speed — and yet it seems VP8 missed a perfectly good chance to do so. Another option would have been to pick an 8×8 transform instead of 4×4, reducing the amount of deblocking by a factor of 2.

    And yes, there’s a simple filter available in the low complexity profile, but it doesn’t help if nobody uses it.

    4. Tree-based arithmetic coding.

    Binary arithmetic coding has become the standard entropy coding method for a wide variety of compressed formats, ranging from LZMA to VP6, H.264 and VP8. It’s simple, relatively fast compared to other arithmetic coding schemes, and easy to make adaptive. The problem with this is that you have to come up with a method for converting non-binary symbols into a list of binary symbols, and then choosing what probabilities to use to code each one. Here’s an example from H.264, the sub-partition mode symbol, which is either 8×8, 8×4, 4×8, or 4×4. encode_decision( context, bit ) writes a binary decision (bit) into a numbered context (context).

    8×8 : encode_decision( 21, 0 ) ;

    8×4 : encode_decision( 21, 1 ) ; encode_decision( 22, 0 ) ;

    4×8 : encode_decision( 21, 1 ) ; encode_decision( 22, 1 ) ; encode_decision( 23, 1 ) ;

    4×4 : encode_decision( 21, 1 ) ; encode_decision( 22, 1 ) ; encode_decision( 23, 0 ) ;

    As can be seen, this is clearly like a Huffman tree. Wouldn’t it be nice if we could represent this in the form of an actual tree data structure instead of code ? On2 thought so — they designed a simple system in VP8 that allowed all binarization schemes in the entire format to be represented as simple tree data structures. This greatly reduces the complexity — not speed-wise, but implementation-wise — of the entropy coder. Personally, I quite like it.

    5. The inverse transform ordering.

    I should at some point write a post about common mistakes made in video formats that everyone keeps making. These are not issues that are patent worries or huge issues for compression — just stupid mistakes that are repeatedly made in new video formats, probably because someone just never asked the guy next to him “does this look stupid ?” before sticking it in the spec.

    One common mistake is the problem of transform ordering. Every sane 2D transform is “separable” — that is, it can be done by doing a 1D transform vertically and doing the 1D transform again horizontally (or vice versa). The original iDCT as used in JPEG, H.263, and MPEG-1/2/4 was an “idealized” iDCT — nobody had to use the exact same iDCT, theirs just had to give very close results to a reference implementation. This ended up resulting in a lot of practical problems. It was also slow ; the only way to get an accurate enough iDCT was to do all the intermediate math in 32-bit.

    Practically every modern format, accordingly, has specified an exact iDCT. This includes H.264, VC-1, RV40, Theora, VP8, and many more. Of course, with an exact iDCT comes an exact ordering — while the “real” iDCT can be done in any order, an exact iDCT usually requires an exact order. That is, it specifies horizontal and then vertical, or vertical and then horizontal.

    All of these transforms end up being implemented in SIMD. In SIMD, a vertical transform is generally the only option, so a transpose is added to the process instead of doing a horizontal transform. Accordingly, there are two ways to do it :

    1. Transpose, vertical transform, transpose, vertical transform.

    2. Vertical transform, transpose, vertical transform, transpose.

    These may seem to be equally good, but there’s one catch — if the transpose is done first, it can be completely eliminated by merging it into the coefficient decoding process. On many modern CPUs, particularly x86, transposes are very expensive, so eliminating one of the two gives a pretty significant speed benefit.

    H.264 did it way 1).

    VC-1 did it way 1).

    Theora (inherited from VP3) did it way 1).

    But no. VP8 has to do it way 2), where you can’t eliminate the transpose. Bah. It’s not a huge deal ; probably only 1-2% overall at most speed-wise, but it’s just a needless waste. What really bugs me is that VP3 got it right — why in the world did they screw it up this time around if they got it right beforehand ?

    RV40 is the other modern format I know that made this mistake.

    (NB : You can do transforms without a transpose, but it’s generally not worth it unless the intermediate needs 32-bit math, as in the case of the “real” iDCT.)

    6. Not supporting interlacing.

    THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU.

    Interlacing was the scourge of H.264. It weaseled its way into every nook and cranny of the spec, making every decoder a thousand lines longer. H.264 even included a highly complicated — and effective — dedicated interlaced coding scheme, MBAFF. The mere existence of MBAFF, despite its usefulness for broadcasters and others still stuck in the analog age with their 1080i, 576i , and 480i content, was a blight upon the video format.

    VP8 has once and for all avoided it.

    And if anyone suggests adding interlaced support to the experimental VP8 branch, find a straightjacket and padded cell for them before they cause any real damage.

  • Brute Force Dimensional Analysis

    15 juillet 2010, par Multimedia Mike — Game Hacking, Python

    I was poking at the data files of a really bad (is there any other kind ?) interactive movie video game known simply by one letter : D. The Sega Saturn version of the game is comprised primarily of Sega FILM/CPK files, about which I wrote the book. The second most prolific file type bears the extension ’.dg2’. Cursory examination of sample files revealed an apparently headerless format. Many of the video files are 288x144 in resolution. Multiplying that width by that height and then doubling it (as in, 2 bytes/pixel) yields 82944, which happens to be the size of a number of these DG2 files. Now, if only I had a tool that could take a suspected raw RGB file and convert it to a more standard image format.

    Here’s the FFmpeg conversion recipe I used :

     ffmpeg -f rawvideo -pix_fmt rgb555 -s 288x144 -i raw_file -y output.png
    

    So that covers the files that are suspected to be 288x144 in dimension. But what about other file sizes ? My brute force approach was to try all possible dimensions that would yield a particular file size. The Python code for performing this operation is listed at the end of this post.

    It’s interesting to view the progression as the script compresses to different sizes :



    That ’D’ is supposed to be red. So right away, we see that rgb555(le) is not the correct input format. Annoyingly, FFmpeg cannot handle rgb555be as a raw input format. But this little project worked well enough as a proof of concept.

    If you want to toy around with these files (and I know you do), I have uploaded a selection at : http://multimedia.cx/dg2/.

    Here is my quick Python script for converting one of these files to every acceptable resolution.

    work-out-resolution.py :

    PYTHON :
    1. # !/usr/bin/python
    2.  
    3. import commands
    4. import math
    5. import os
    6. import sys
    7.  
    8. FFMPEG = "/path/to/ffmpeg"
    9.  
    10. def convert_file(width, height, filename) :
    11.  outfile = "%s-%dx%d.png" % (filename, width, height)
    12.  command = "%s -f rawvideo -pix_fmt rgb555 -s %dx%d -i %s -y %s" % (FFMPEG, width, height, filename, outfile)
    13.  commands.getstatusoutput(command)
    14.  
    15. if len(sys.argv) <2 :
    16.  print "USAGE : work-out-resolution.py <file>"
    17.  sys.exit(1)
    18.  
    19. filename = sys.argv[1]
    20. if not os.path.exists(filename) :
    21.  print filename + " does not exist"
    22.  sys.exit(1)
    23.  
    24. filesize = os.path.getsize(filename) / 2
    25.  
    26. limit = int(math.sqrt(filesize)) + 1
    27. for i in xrange(1, limit) :
    28.  if filesize % i == 0 and filesize & 1 == 0 :
    29.   convert_file(i, filesize / i, filename)
    30.   convert_file(filesize / i, i, filename)
  • Announcing the world’s fastest VP8 decoder : ffvp8

    24 juillet 2010, par Dark Shikari — VP8, ffmpeg, google, speed

    Back when I originally reviewed VP8, I noted that the official decoder, libvpx, was rather slow. While there was no particular reason that it should be much faster than a good H.264 decoder, it shouldn’t have been that much slower either ! So, I set out with Ronald Bultje and David Conrad to make a better one in FFmpeg. This one would be community-developed and free from the beginning, rather than the proprietary code-dump that was libvpx. A few weeks ago the decoder was complete enough to be bit-exact with libvpx, making it the first independent free implementation of a VP8 decoder. Now, with the first round of optimizations complete, it should be ready for primetime. I’ll go into some detail about the development process, but first, let’s get to the real meat of this post : the benchmarks.

    We tested on two 1080p clips : Parkjoy, a live-action 1080p clip, and the Sintel trailer, a CGI 1080p clip. Testing was done using “time ffmpeg -vcodec libvpx or vp8 -i input -vsync 0 -an -f null -”. We all used the latest SVN FFmpeg at the time of this posting ; the last revision optimizing the VP8 decoder was r24471.

    Parkjoy graphSintel graph

    As these benchmarks show, ffvp8 is clearly much faster than libvpx, particularly on 64-bit. It’s even faster by a large margin on Atom, despite the fact that we haven’t even begun optimizing for it. In many cases, ffvp8′s extra speed can make the difference between a video that plays and one that doesn’t, especially in modern browsers with software compositing engines taking up a lot of CPU time. Want to get faster playback of VP8 videos ? The next versions of FFmpeg-based players, like VLC, will include ffvp8. Want to get faster playback of WebM in your browser ? Lobby your browser developers to use ffvp8 instead of libvpx. I expect Chrome to switch first, as they already use libavcodec for most of their playback system.

    Keep in mind ffvp8 is not “done” — we will continue to improve it and make it faster. We still have a number of optimizations in the pipeline that aren’t committed yet.

    Developing ffvp8

    The initial challenge, primarily pioneered by David and Ronald, was constructing the core decoder and making it bit-exact to libvpx. This was rather challenging, especially given the lack of a real spec. Many parts of the spec were outright misleading and contradicted libvpx itself. It didn’t help that the suite of official conformance tests didn’t even cover all the features used by the official encoder ! We’ve already started adding our own conformance tests to deal with this. But I’ve complained enough in past posts about the lack of a spec ; let’s get onto the gritty details.

    The next step was adding SIMD assembly for all of the important DSP functions. VP8′s motion compensation and deblocking filter are by far the most CPU-intensive parts, much the same as in H.264. Unlike H.264, the deblocking filter relies on a lot of internal saturation steps, which are free in SIMD but costly in a normal C implementation, making the plain C code even slower. Of course, none of this is a particularly large problem ; any sane video decoder has all this stuff in SIMD.

    I tutored Ronald in x86 SIMD and wrote most of the motion compensation, intra prediction, and some inverse transforms. Ronald wrote the rest of the inverse transforms and a bit of the motion compensation. He also did the most difficult part : the deblocking filter. Deblocking filters are always a bit difficult because every one is different. Motion compensation, by comparison, is usually very similar regardless of video format ; a 6-tap filter is a 6-tap filter, and most of the variation going on is just the choice of numbers to multiply by.

    The biggest challenge in an SIMD deblocking filter is to avoid unpacking, that is, going from 8-bit to 16-bit. Many operations in deblocking filters would naively appear to require more than 8-bit precision. A simple example in the case of x86 is abs(a-b), where a and b are 8-bit unsigned integers. The result of “a-b” requires a 9-bit signed integer (it can be anywhere from -255 to 255), so it can’t fit in 8-bit. But this is quite possible to do without unpacking : (satsub(a,b) | satsub(b,a)), where “satsub” performs a saturating subtract on the two values. If the value is positive, it yields the result ; if the value is negative, it yields zero. Oring the two together yields the desired result. This requires 4 ops on x86 ; unpacking would probably require at least 10, including the unpack and pack steps.

    After the SIMD came optimizing the C code, which still took a significant portion of the total runtime. One of my biggest optimizations was adding aggressive “smart” prefetching to reduce cache misses. ffvp8 prefetches the reference frames (PREVIOUS, GOLDEN, and ALTREF)… but only the ones which have been used reasonably often this frame. This lets us prefetch everything we need without prefetching things that we probably won’t use. libvpx very often encodes frames that almost never (but not quite never) use GOLDEN or ALTREF, so this optimization greatly reduces time spent prefetching in a lot of real videos. There are of course countless other optimizations we made that are too long to list here as well, such as David’s entropy decoder optimizations. I’d also like to thank Eli Friedman for his invaluable help in benchmarking a lot of these changes.

    What next ? Altivec (PPC) assembly is almost nonexistent, with the only functions being David’s motion compensation code. NEON (ARM) is completely nonexistent : we’ll need that to be fast on mobile devices as well. Of course, all this will come in due time — and as always — patches welcome !

    Appendix : the raw numbers

    Here’s the raw numbers (in fps) for the graphs at the start of this post, with standard error values :

    Core i7 620QM (1.6Ghz), Windows 7, 32-bit :
    Parkjoy ffvp8 : 44.58 0.44
    Parkjoy libvpx : 33.06 0.23
    Sintel ffvp8 : 74.26 1.18
    Sintel libvpx : 56.11 0.96

    Core i5 520M (2.4Ghz), Linux, 64-bit :
    Parkjoy ffvp8 : 68.29 0.06
    Parkjoy libvpx : 41.06 0.04
    Sintel ffvp8 : 112.38 0.37
    Sintel libvpx : 69.64 0.09

    Core 2 T9300 (2.5Ghz), Mac OS X 10.6.4, 64-bit :
    Parkjoy ffvp8 : 54.09 0.02
    Parkjoy libvpx : 33.68 0.01
    Sintel ffvp8 : 87.54 0.03
    Sintel libvpx : 52.74 0.04

    Core Duo (2Ghz), Mac OS X 10.6.4, 32-bit :
    Parkjoy ffvp8 : 21.31 0.02
    Parkjoy libvpx : 17.96 0.00
    Sintel ffvp8 : 41.24 0.01
    Sintel libvpx : 29.65 0.02

    Atom N270 (1.6Ghz), Linux, 32-bit :
    Parkjoy ffvp8 : 15.29 0.01
    Parkjoy libvpx : 12.46 0.01
    Sintel ffvp8 : 26.87 0.05
    Sintel libvpx : 20.41 0.02