Recherche avancée

Médias (91)

Autres articles (51)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • D’autres logiciels intéressants

    12 avril 2011, par

    On ne revendique pas d’être les seuls à faire ce que l’on fait ... et on ne revendique surtout pas d’être les meilleurs non plus ... Ce que l’on fait, on essaie juste de le faire bien, et de mieux en mieux...
    La liste suivante correspond à des logiciels qui tendent peu ou prou à faire comme MediaSPIP ou que MediaSPIP tente peu ou prou à faire pareil, peu importe ...
    On ne les connais pas, on ne les a pas essayé, mais vous pouvez peut être y jeter un coup d’oeil.
    Videopress
    Site Internet : (...)

Sur d’autres sites (7490)

  • Unveiling GA4 Issues : 8 Questions from a Marketer That GA4 Can’t Answer

    8 janvier 2024, par Alex

    It’s hard to believe, but Universal Analytics had a lifespan of 11 years, from its announcement in March 2012. Despite occasional criticism, this service established standards for the entire web analytics industry. Many metrics and reports became benchmarks for a whole generation of marketers. It truly was an era.

    For instance, a lot of marketers got used to starting each workday by inspecting dashboards and standard traffic reports in the Universal Analytics web interface. There were so, so many of those days. They became so accustomed to Universal Analytics that they would enter reports, manipulate numbers, and play with metrics almost on autopilot, without much thought.

    However, six months have passed since the sunset of Universal Analytics – precisely on July 1, 2023, when Google stopped processing requests for resources using the previous version of Google Analytics. The time when data about visitors and their interactions with the website were more clearly structured within the UA paradigm is now in the past. GA4 has brought a plethora of opportunities to marketers, but along with those opportunities came a series of complexities.

    GA4 issues

    Since its initial announcement in 2020, GA4 has been plagued with errors and inconsistencies. It still has poor and sometimes illogical documentation, numerous restrictions, and peculiar interface solutions. But more importantly, the barrier to entry into web analytics has significantly increased.

    If you diligently follow GA4 updates, read the documentation, and possess skills in working with data (SQL and basic statistics), you probably won’t feel any problems – you know how to set up a convenient and efficient environment for your product and marketing data. But what if you’re not that proficient ? That’s when issues arise.

    In this article, we try to address a series of straightforward questions that less experienced users – marketers, project managers, SEO specialists, and others – want answers to. They have no time to delve into the intricacies of GA4 but seek access to the fundamentals crucial for their functionality.

    Previously, in Universal Analytics, they could quickly and conveniently address their issues. Now, the situation has become, to put it mildly, more complex. We’ve identified 8 such questions for which the current version of GA4 either fails to provide answers or implies that answers would require significant enhancements. So, let’s dive into them one by one.

    Question 1 : What are the most popular traffic sources on my website ?

    Seemingly a straightforward question. What does GA4 tell us ? It responds with a question : “Which traffic source parameter are you interested in ?”

    GA4 traffic source

    Wait, what ?

    People just want to know which resources bring them the most traffic. Is that really an issue ?

    Unfortunately, yes. In GA4, there are not one, not two, but three traffic source parameters :

    1. Session source.
    2. First User Source – the source of the first session for each user.
    3. Just the source – determined at the event or conversion level.

    If you wanted to open a report and draw conclusions quickly, we have bad news for you. Before you start ranking your traffic sources by popularity, you need to do some mental work on which parameter and in what context you will look. And even when you decide, you’ll need to make a choice in the selection of standard reports : work with the User Acquisition Report or Traffic Acquisition.

    Yes, there is a difference between them : the first uses the First User Source parameter, and the second uses the session source. And you need to figure that out too.

    Question 2 : What is my conversion rate ?

    This question concerns everyone, and it should be simple, implying a straightforward answer. But no.

    GA4 conversion rate

    In GA4, there are three conversion metrics (yes, three) :

    1. Session conversion – the percentage of sessions with a conversion.
    2. User conversion – the percentage of users who completed a conversion.
    3. First-time Purchaser Conversion – the share of active users who made their first purchase.

    If the last metric doesn’t interest us much, GA4 users can still choose something from the remaining two. But what’s next ? Which parameters to use for comparison ? Session source or user source ? What if you want to see the conversion rate for a specific event ? And how do you do this in analyses rather than in standard reports ?

    In the end, instead of an answer to a simple question, marketers get a bunch of new questions.

    Question 3. Can I trust user and session metrics ?

    Unfortunately, no. This may boggle the mind of those not well-versed in the mechanics of calculating user and session metrics, but it’s the plain truth : the numbers in GA4 and those in reality may and will differ.

    GA4 confidence levels

    The reason is that GA4 uses the HyperLogLog++ statistical algorithm to count unique values. Without delving into details, it’s a mechanism for approximate estimation of a metric with a certain level of error.

    This error level is quite well-documented. For instance, for the Total Users metric, the error level is 1.63% (for a 95% confidence interval). In simple terms, this means that 100,000 users in the GA4 interface equate to 100,000 1.63% in reality.

    Furthermore – but this is no surprise to anyone – GA4 samples data. This means that with too large a sample size or when using a large number of parameters, the application will assess your metrics based on a partial sample – let’s say 5, 10, or 30% of the entire population.

    It’s a reasonable assumption, but it can (and probably will) surprise marketers – the metrics will deviate from reality. All end-users can do (excluding delving into raw data methodologies) is to take this error level into account in their conclusions.

    Question 4. How do I calculate First Click attribution ?

    You can’t. Unfortunately, as of late, GA4 offers only three attribution models available in the Attribution tab : Last Click, Last Click For Google Ads, and Data Driven. First Click attribution is essential for understanding where and when demand is generated. In the previous version of Google Analytics (and until recently, in the current one), users could quickly apply First Click and other attribution models, compare them, and gain insights. Now, this capability is gone.

    GA4 attribution model

    Certainly, you can look at the conversion distribution considering the First User Source parameter – this will be some proxy for First Click attribution. However, comparing it with others in the Model Comparison tab won’t be possible. In the context of the GA4 interface, it makes sense to forget about non-standard attribution models.

    Question 5. How do I account for intra-session traffic ?

    Intra-session traffic essentially refers to a change in traffic sources within a session. Imagine a scenario where a user comes to your site organically from Google and, within a minute, comes from an email campaign. In the previous version of Google Analytics, a new session with the traffic source “e-mail” would be created in such a case. But now, the situation has changed.

    A session now only ends in the case of a timeout – say, 30 minutes without interaction. This means a session will always have a source from which it started. If a user changes the source within a session (clicks on an ad, from email campaigns, and so on), you won’t know anything about it until they convert. This is a significant blow to intra-session traffic since their contribution to traffic remains virtually unnoticed. 

    Question 6. How can I account for users who have not consented to the use of third-party cookies ?

    You can’t. Google Consent Mode settings imply several options when a user rejects the use of 3rd party cookies. In GA4 and BigQuery, depersonalized cookieless pings will be sent. These pings do not contain specific client_id, session_id, or other custom dimensions. As a result, you won’t be able to consider them as users or link the actions of such users together.

    Question 7. How can I compare data in explorations with the previous year ?

    The maximum data retention period for a free GA4 account is 14 months. This means that if the date range is wider, you can only use standard reports. You won’t be able to compare or view cohorts or funnels for periods more than 14 months ago. This makes the product functionality less rich because various report formats in explorations are very convenient for comparing specific metrics in easily digestible reports.

    GA4 data retention

    Of course, you always have the option to connect BigQuery and store raw data without limitations, but this process usually requires the involvement of an advanced analyst. And precisely this option is unavailable to most marketers in small teams.

    Question 8. Is the data for yesterday accurate ?

    Unknown. Google declares that data processing in GA4 takes up to 48 hours. And although this process is faster, most users still have room for frustration. And they can be understood.

    Data processing time in GA4

    What does “data processing takes 24-48 hours” mean ? When will the data in reports be complete ? For yesterday ? Or the day before yesterday ? Or for all days that were more than two days ago ? Unclear. What should marketers tell their managers when they were asked if all the data is in this report ? Well, probably all of it… or maybe not… Let’s wait for 48 hours…

    Undoubtedly, computational resources and time are needed for data preprocessing and aggregation. It’s okay that data for today will not be up-to-date. And probably not for yesterday either. But people just want to know when they can trust their data. Are they asking for too much : just a note that this report contains all the data sent and processed by Google Analytics ?

    What should you do ?

    Credit should be given to the Google team – they have done a lot to enable users to answer these questions in one form or another. For example, you can use data streaming in BigQuery and work with raw data. The entry threshold for this functionality has been significantly lowered. In fact, if you are dissatisfied with the GA4 interface, you can organize your export to BigQuery and create your own reports without (almost) any restrictions.

    Another strong option is the widespread launch of GTM Server Side. This allows you to quite freely modify the event model and essentially enrich each hit with various parameters, doing this in a first-party context. This, of course, reduces the harmful impact of most of the limitations described in this text.

    But this is not a solution.

    The users in question – marketers, managers, developers – they do not want or do not have the time for a deep dive into the issue. And they want simple answers to simple (it seemed) questions. And for now, unfortunately, GA4 is more of a professional tool for analysts than a convenient instrument for generating insights for not very advanced users.

    Why is this such a serious issue ?

    The thing is – and this is crucial – over the past 10 years, Google has managed to create a sort of GA-bubble for marketers. Many of them have become so accustomed to Google Analytics that when faced with another issue, they don’t venture to explore alternative solutions but attempt to solve it on their own. And almost always, this turns out to be expensive and inconvenient.

    However, with the latest updates to GA4, it is becoming increasingly evident that this application is struggling to address even the most basic questions from users. And these questions are not fantastically complex. Much of what was described in this article is not an unsolvable mystery and is successfully addressed by other analytics services.

    Let’s try to answer some of the questions described from the perspective of Matomo.

    Question 1 : What are the most popular traffic sources ? [Solved]

    In the Acquisition panel, you will find at least three easily identifiable reports – for traffic channels (All Channels), sources (Websites), and campaigns (Campaigns). 

    Channel Type Table

    With these, you can quickly and easily answer the question about the most popular traffic sources, and if needed, delve into more detailed information, such as landing pages.

    Question 2 : What is my conversion rate ? [Solved]

    Under Goals in Matomo, you’ll easily find the overall conversion rate for your site. Below that you’ll have access to the conversion rate of each goal you’ve set in your Matomo instance.

    Question 3 : Can I trust user and session metrics ? [Solved]

    Yes. With Matomo, you’re guaranteed 100% accurate data. Matomo does not apply sampling, does not employ specific statistical algorithms, or any analogs of threshold values. Yes, it is possible, and it’s perfectly normal. If you see a metric in the visits or users field, it accurately represents reality by 100%.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Question 4 : How do I calculate First Click attribution ? [Solved]

    You can do this in the same section where the other 5 attribution models, available in Matomo, are calculated – in the Multi Attribution section.

    Multi Attribution feature

    You can choose a specific conversion and, in a few clicks, calculate and compare up to 3 marketing attribution models. This means you don’t have to spend several days digging through documentation trying to understand how a particular model is calculated. Have a question – get an answer.

    Question 5 : How do I account for intra-session traffic ? [Solved]

    Matomo creates a new visit when a user changes a campaign. This means that you will accurately capture all relevant traffic if it is adequately tagged. No campaigns will be lost within a visit, as they will have a new utm_campaign parameter.

    This is a crucial point because when the Referrer changes, a new visit is not created, but the key lies in something else – accounting for all available traffic becomes your responsibility and depends on how you tag it.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Question 6 : How can I account for users who have not consented to the use of third-party cookies ? [Solved]

    Google Analytics requires users to accept a cookie consent banner with “analytics_storage=granted” to track them. If users reject cookie consent banners, however, then Google Analytics can’t track these visitors at all. They simply won’t show up in your traffic reports. 

    Matomo doesn’t require cookie consent banners (apart from in the United Kingdom and Germany) and can therefore continue to track visitors even after they have rejected a cookie consent screen. This is achieved through a config_id variable (the user identifier equivalent which is updating once a day). 

    Matomo doesn't need cookie consent, so you see a complete view of your traffic

    This means that virtually all of your website traffic will be tracked regardless of whether users accept a cookie consent banner or not.

    Question 7 : How can I compare data in explorations with the previous year ? [Solved]

    There is no limitation on data retention for your aggregated reports in Matomo. The essence of Matomo experience lies in the reporting data, and consequently, retaining reports indefinitely is a viable option. So you can compare data for any timeframe. 7

    Date Comparison Selector
  • Is Google Analytics Accurate ? 6 Important Caveats

    8 novembre 2022, par Erin

    It’s no secret that accurate website analytics is crucial for growing your online business — and Google Analytics is often the go-to source for insights. 

    But is Google Analytics data accurate ? Can you fully trust the provided numbers ? Here’s a detailed explainer.

    How Accurate is Google Analytics ? A Data-Backed Answer 

    When properly configured, Google Analytics (Universal Analytics and Google Analytics 4) is moderately accurate for global traffic collection. That said : Google Analytics doesn’t accurately report European traffic. 

    According to GDPR provisions, sites using GA products must display a cookie consent banner. This consent is required to collect third-party cookies — a tracking mechanism for identifying users across web properties.

    Google Analytics (GA) cannot process data about the user’s visit if they rejected cookies. In such cases, your analytics reports will be incomplete.

    Cookie rejection refers to visitors declining or blocking cookies from ever being collected by a specific website (or within their browser). It immediately affects the accuracy of all metrics in Google Analytics.

    Google Analytics is not accurate in locations where cookie consent to tracking is legally required. Most consumers don’t like disruptive cookie banners or harbour concerns about their privacy — and chose to reject tracking. 

    This leaves businesses with incomplete data, which, in turn, results in : 

    • Lower traffic counts as you’re not collecting 100% of the visitor data. 
    • Loss of website optimisation capabilities. You can’t make data-backed decisions due to inconsistent reporting

    For the above reasons, many companies now consider cookieless website tracking apps that don’t require consent screen displays. 

    Why is Google Analytics Not Accurate ? 6 Causes and Solutions 

    A high rejection rate of cookie banners is the main reason for inaccurate Google Analytics reporting. In addition, your account settings can also hinder Google Analytics’ accuracy.

    If your analytics data looks wonky, check for these six Google Analytics accuracy problems. 

    You Need to Secure Consent to Cookies Collection 

    To be GDPR-compliant, you must display a cookie consent screen to all European users. Likewise, other jurisdictions and industries require similar measures for user data collection. 

    This is a nuisance for many businesses since cookie rejection undermines their remarketing capabilities. Hence, some try to maximise cookie acceptance rates with dark patterns. For example : hide the option to decline tracking or make the texts too small. 

    Cookie consent banner examples
    Banner on the left doesn’t provide an evident option to reject all cookies and nudges the user to accept tracking. Banner on the right does a better job explaining the purpose of data collection and offers a straightforward yes/no selection

    Sadly, not everyone’s treating users with respect. A joint study by German and American researchers found that only 11% of US websites (from a sample of 5,000+) use GDPR-compliant cookie banners.

    As a result, many users aren’t aware of the background data collection to which they have (or have not) given consent. Another analysis of 200,000 cookies discovered that 70% of third-party marketing cookies transfer user data outside of the EU — a practice in breach of GDPR.

    Naturally, data regulators and activities are after this issue. In April 2022, Google was pressured to introduce a ‘reject all’ cookies button to all of its products (a €150 million compliance fine likely helped with that). Whereas, noyb has lodged over 220 complaints against individual websites with deceptive cookie consent banners.

    The takeaway ? Messing up with the cookie consent mechanism can get you in legal trouble. Don’t use sneaky banners as there are better ways to collect website traffic statistics. 

    Solution : Try Matomo GDPR-Friendly Analytics 

    Fill in the gaps in your traffic analytics with Matomo – a fully GDPR-compliant product that doesn’t rely on third-party cookies for tracking web visitors. Because of how it is designed, the French data protection authority (CNIL) confirmed that Matomo can be used to collect data without tracking consent.

    With Matomo, you can track website users without asking for cookie consent. And when you do, we supply you with a compact, compliant, non-disruptive cookie banner design. 

    Your Google Tag Isn’t Embedded Correctly 

    Google Tag (gtag.js) is a web tracking script that sends data to your Google Analytics, Google Ads and Google Marketing Platform.

    A corrupted gtag.js installation can create two accuracy issues : 

    • Duplicate page tracking 
    • Missing script installation 

    Is there a way to tell if you’re affected ?

    Yes. You may have duplicate scripts installed if you have a very low bounce rate on most website pages (below 15% – 20%). The above can happen if you’re using a WordPress GA plugin and additionally embed gtag.js straight in your website code. 

    A tell-tale sign of a missing script on some pages is low/no traffic stats. Google alerts you about this with a banner : 

    Google Analytics alerts

    Solution : Use Available Troubleshooting Tools 

    Use Google Analytics Debugger extension to analyse pages with low bounce rates. Use the search bar to locate duplicate code-tracking elements. 

    Alternatively, you can use Google Tag Assistant for diagnosing snippet install and troubleshooting issues on individual pages. 

    If the above didn’t work, re-install your analytics script

    Machine Learning and Blended Data Are Applied

    Google Analytics 4 (GA4) relies a lot on machine learning and algorithmic predictions.

    By applying Google’s advanced machine learning models, the new Analytics can automatically alert you to significant trends in your data. [...] For example, it calculates churn probability so you can more efficiently invest in retaining customers.

    On the surface, the above sounds exciting. In practice, Google’s application of predictive algorithms means you’re not seeing actual data. 

    To offer a variation of cookieless tracking, Google algorithms close the gaps in reporting by creating models (i.e., data-backed predictions) instead of reporting on actual user behaviours. Therefore, your GA4 numbers may not be accurate.

    For bigger web properties (think websites with 1+ million users), Google also relies on data sampling — a practice of extrapolating data analytics, based on a data subset, rather than the entire dataset. Once again, this can lead to inconsistencies in reporting with some numbers (e.g., average conversion rates) being inflated or downplayed. 

    Solution : Try an Alternative Website Analytics App 

    Unlike GA4, Matomo reports consist of 100% unsampled data. All the aggregated reporting you see is based on real user data (not guesstimation). 

    Moreover, you can migrate from Universal Analytics (UA) to Matomo without losing access to your historical records. GA4 doesn’t yet have any backward compatibility.

    Spam and Bot Traffic Isn’t Filtered Out 

    Surprise ! 42% of all Internet traffic is generated by bots, of which 27.7% are bad ones.

    Good bots (aka crawlers) do essential web “housekeeping” tasks like indexing web pages. Bad bots distribute malware, spam contact forms, hack user accounts and do other nasty stuff. 

    A lot of such spam bots are designed specifically for web analytics apps. The goal ? Flood your dashboard with bogus data in hopes of getting some return action from your side. 

    Types of Google Analytics Spam :

    • Referral spam. Spambots hijack the referrer, displayed in your GA referral traffic report to indicate a page visit from some random website (which didn’t actually occur). 
    • Event spam. Bots generate fake events with free language entries enticing you to visit their website. 
    • Ghost traffic spam. Malicious parties can also inject fake pageviews, containing URLs that they want you to click. 

    Obviously, such spammy entities distort the real website analytics numbers. 

    Solution : Set Up Bot/Spam Filters 

    Google Analytics 4 has automatic filtering of bot traffic enabled for all tracked Web and App properties. 

    But if you’re using Universal Analytics, you’ll have to manually configure spam filtering. First, create a new view and then set up a custom filter. Program it to exclude :

    • Filter Field : Request URI
    • Filter Pattern : Bot traffic URL

    Once you’ve configured everything, validate the results using Verify this filter feature. Then repeat the process for other fishy URLs, hostnames and IP addresses. 

    You Don’t Filter Internal Traffic 

    Your team(s) spend a lot of time on your website — and their sporadic behaviours can impair your traffic counts and other website metrics.

    To keep your data “employee-free”, exclude traffic from : 

    • Your corporate IPs addresses 
    • Known personal IPs of employees (for remote workers) 

    If you also have a separate stage version of your website, you should also filter out all traffic coming from it. Your developers, contractors and marketing people spend a lot of time fiddling with your website. This can cause a big discrepancy in average time on page and engagement rates. 

    Solution : Set Internal Traffic Filters 

    Google provides instructions for excluding internal traffic from your reports using IPv4/IPv6 address filters. 

    Google Analytics IP filters

    Session Timeouts After 30 Minutes 

    After 30 minutes of inactivity, Google Analytics tracking sessions start over. Inactivity means no recorded interaction hits during this time. 

    Session timeouts can be a problem for some websites as users often pin a tab to check it back later. Because of this, you can count the same user twice or more — and this leads to skewed reporting. 

    Solution : Programme Custom Timeout Sessions

    You can codify custom cookie timeout sessions with the following code snippets : 

    Final Thoughts 

    Thanks to its scale and longevity, Google Analytics has some strong sides, but its data accuracy isn’t 100% perfect.

    The inability to capture analytics data from users who don’t consent to cookie tracking and data sampling applied to bigger web properties may be a deal-breaker for your business. 

    If that’s the case, try Matomo — a GDPR-compliant, accurate web analytics solution. Start your 21-day free trial now. No credit card required.

  • Introducing the BigQuery & Data Warehouse Export feature

    30 janvier, par Erin

    Matomo is built on a simple truth : your data belongs to you, and you should have complete control over it. That’s why we’re excited to launch our new BigQuery & Data Warehouse Export feature for Matomo Cloud, giving you even more ways to work with your analytics data. 

    Until now, getting raw data from Matomo Cloud required APIs and custom scripts, or waiting for engineering help.  

    Our new BigQuery & Data Warehouse Export feature removes those barriers. You can now access your raw, unaggregated data and schedule regular exports straight to your data warehouse. 

    The feature works with all major data warehouses including (but not limited to) : 

    • Google BigQuery 
    • Amazon Redshift 
    • Snowflake 
    • Azure Synapse Analytics 
    • Apache Hive 
    • Teradata 

    You can schedule exports, combine your Matomo data with other data sources in your data warehouse, and easily query data with SQL-like queries. 

    Direct raw data access for greater data portability 

    Waiting for engineering support can delay your work. Managing API connections and writing scripts can be time-consuming. This keeps you from focusing on what you do best—analysing data. 

    BigQuery create-table-menu

    With the BigQuery & Data Warehouse Export feature, you get direct access to your raw Matomo data without the technical setup. So, you can spend more time analysing data and finding insights that matter. 

    Bringing your data together 

    Answering business questions often requires data from multiple sources. A single customer interaction might span your CRM, web analytics, sales systems, and more. Piecing this data together manually is time-consuming—what starts as a seemingly simple question from stakeholders can turn into hours of work collecting and comparing data across different tools. 

    This feature lets you combine your Matomo data with data from other business systems in your data warehouse. Instead of switching between tools or manually comparing spreadsheets, you can analyse all your data in one place to better understand how customers interact with your business. 

    Easy, custom analysis with SQL-like queries 

    Standard, pre-built reports often don’t address the specific, detailed questions that analysts need to answer.  

    When you use the BigQuery & Data Warehouse Export feature, you can use SQL-like queries in your data warehouse to do detailed, customised analysis. This flexibility allows you to explore your data in depth and uncover specific insights that aren’t possible with pre-built reports. 

    Here is an example of how you might use SQL-like query to compare the behaviours of paying vs. non-paying users : 

    				
                                            <xmp>SELECT  

    custom_dimension_value AS user_type, -- Assuming 'user_type' is stored in a custom dimension

    COUNT(*) AS total_visits,  

    AVG(visit_total_time) AS avg_duration,

    SUM(conversion.revenue) AS total_spent  

    FROM  

    `your_project.your_dataset.matomo_log_visit` AS visit

    LEFT JOIN  

    `your_project.your_dataset.matomo_log_conversion` AS conversion  

    ON  

    visit.idvisit = conversion.idvisit  

    GROUP BY  

    custom_dimension_value; </xmp>
                                   

    This query helps you compare metrics such as the number of visits, average session duration, and total amount spent between paying and non-paying users. It provides a full view of behavioural differences between these groups. 

    Advanced data manipulation and visualisation 

    When you need to create detailed reports or dive deep into data analysis, working within the constraints of a fixed user interface (UI) can limit your ability to draw insights. 

    Exporting your Matomo data to a data warehouse like BigQuery provides greater flexibility for in-depth manipulation and advanced visualisations, enabling you to uncover deeper insights and tailor your reports more effectively. 

    Getting started 

    To set up data warehouse exports in your Matomo : 

    1. Go to System Admin (cog icon in the top right corner) 
    2. Select ‘Export’ from the left-hand menu 
    3. Choose ‘BigQuery & Data Warehouse’ 

    You’ll find detailed instructions in our data warehouse exports guide 

    Please note, enabling this feature will cost an additional 10% of your current subscription. You can view the exact cost by following the steps above. 

    New to Matomo ? Start your 21-day free trial now (no credit card required), or request a demo.