
Recherche avancée
Médias (91)
-
GetID3 - Boutons supplémentaires
9 avril 2013, par kent1
Mis à jour : Avril 2013
Langue : français
Type : Image
-
Core Media Video
4 avril 2013, par kent1
Mis à jour : Juin 2013
Langue : français
Type : Video
-
The pirate bay depuis la Belgique
1er avril 2013, par kent1
Mis à jour : Avril 2013
Langue : français
Type : Image
-
Bug de détection d’ogg
22 mars 2013, par kent1
Mis à jour : Avril 2013
Langue : français
Type : Video
-
Exemple de boutons d’action pour une collection collaborative
27 février 2013, par kent1
Mis à jour : Mars 2013
Langue : français
Type : Image
-
Exemple de boutons d’action pour une collection personnelle
27 février 2013, par kent1
Mis à jour : Février 2013
Langue : English
Type : Image
Autres articles (47)
-
XMP PHP
13 mai 2011, par kent1Dixit Wikipedia, XMP signifie :
Extensible Metadata Platform ou XMP est un format de métadonnées basé sur XML utilisé dans les applications PDF, de photographie et de graphisme. Il a été lancé par Adobe Systems en avril 2001 en étant intégré à la version 5.0 d’Adobe Acrobat.
Étant basé sur XML, il gère un ensemble de tags dynamiques pour l’utilisation dans le cadre du Web sémantique.
XMP permet d’enregistrer sous forme d’un document XML des informations relatives à un fichier : titre, auteur, historique (...) -
MediaSPIP v0.2
21 juin 2013, par kent1MediaSPIP 0.2 est la première version de MediaSPIP stable.
Sa date de sortie officielle est le 21 juin 2013 et est annoncée ici.
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Comme pour la version précédente, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...) -
MediaSPIP Core : La Configuration
9 novembre 2010, par kent1MediaSPIP Core fournit par défaut trois pages différentes de configuration (ces pages utilisent le plugin de configuration CFG pour fonctionner) : une page spécifique à la configuration générale du squelettes ; une page spécifique à la configuration de la page d’accueil du site ; une page spécifique à la configuration des secteurs ;
Il fournit également une page supplémentaire qui n’apparait que lorsque certains plugins sont activés permettant de contrôler l’affichage et les fonctionnalités spécifiques (...)
Sur d’autres sites (6222)
-
A Guide to Bank Customer Segmentation
18 juillet 2024, par ErinBanking customers are more diverse, complex, and demanding than ever. As a result, banks have to work harder to win their loyalty, with 75% saying they would switch to a bank that better fits their needs.
The problem is banking customers’ demands are increasingly varied amid economic uncertainties, increased competition, and generational shifts.
If banks want to retain their customers, they can’t treat them all the same. They need a bank customer segmentation strategy that allows them to reach specific customer groups and cater to their unique demands.
What is customer segmentation ?
Customer segmentation divides a customer base into distinct groups based on shared characteristics or behaviours.
This allows companies to analyse the behaviours and needs of different customer groups. Banks can use these insights to target segments with relevant marketing throughout the customer cycle, e.g., new customers, inactive customers, loyal customers, etc.
You combine data points from multiple segmentation categories to create a customer segment. The most common customer segmentation categories include :
- Demographic segmentation
- Website activity segmentation
- Geographic segmentation
- Purchase history segmentation
- Product-based segmentation
- Customer lifecycle segmentation
- Technographic segmentation
- Channel preference segmentation
- Value-based segmentation
By combining segmentation categories, you can create detailed customer segments. For example, high-value customers based in a particular market, using a specific product, and approaching the end of the lifecycle. This segment is ideal for customer retention campaigns, localised for their market and personalised to satisfy their needs.
Matomo’s privacy-centric web analytics solution helps you capture data from the first visit. Unlike Google Analytics, Matomo doesn’t use data sampling (more on this later) or AI to fill in data gaps. You get 100% accurate data for reliable insights and customer segmentation.
Try Matomo for Free
Get the web insights you need, without compromising data accuracy.
Why is customer segmentation important for banks ?
Customer segmentation allows you to address the needs of specific groups instead of treating all of your customers the same. This has never been more important amid a surge in bank switching, with three in four customers ready to switch to a provider that better suits their needs.
Younger customers are the most likely to switch, with 19% of 18-24 year olds changing their primary bank in the past year (PDF).
Customer expectations are changing, driven by economic uncertainties, declining trust in traditional banking, and the rise of fintech. Even as economic pressures lift, banks need to catch up with the demands of maturing millennials, Gen Z, and future generations of banking customers.
Switching is the new normal, especially for tech-savvy customers encouraged by an expanding world of digital banking options.
To retain customers, banks need to know them better and understand how their needs change over time. Customer retention provides the insights banks need to understand these needs at a granular level and the means to target specific customer groups with relevant messages.
At its core, customer segmentation is essential to banks for two key reasons :
- Customer retention : Holding on to customers for longer by satisfying their personal needs.
- Customer lifetime value : Maximising ongoing customer revenue through retention, purchase frequency, cross-selling, and upselling.
Here are some actionable bank customer segmentation strategies that can achieve these two objectives :
Prevent switching with segment analysis
Use customer segmentation to prevent them from switching to rivals by knowing what they want from you. Analyse customer needs and how they change throughout the lifecycle. Third-party data reveals general trends, but what do your customers want ?
Use first-party customer data and segmentation to go beyond industry trends. Know exactly what your customers want from you and how to deliver targeted messages to each segment — e.g., first-time homebuyers vs. retirement planners.
Keep customers active with segment targeting
Target customer segments to keep customers engaged and motivated. Create ultra-relevant marketing messages and deliver them with precision to distinct customer segments. Nurture customer motivation by continuing to address their problems and aspirations.
Improve the quality of services and products
Knowing your customers’ needs in greater detail allows you to adapt your products and messages to cater to the most important segments. Customers switch banks because they feel their needs are better met elsewhere. Prevent this by implementing customer segmentation insights into product development and marketing.
Personalise customer experiences by layering segments
Layer segments to create ultra-specific target customer groups for personalised services and marketing campaigns. For example, top-spending customers are one of your most important segments, but there’s only so much you can do with this. However, you can divide this group into even narrower target audiences by layering multiple segments.
For example, segmenting top-spending customers by product type can create more relevant messaging. You can also segment recent activity and pinpoint specific usage segments, such as those with a recent drop in transactions.
Now, you have a three-layered segment of high-spending customers who use specific products less often and whom you can target with re-engagement campaigns.
Maximise customer lifetime value
Bringing all of this together, customer segmentation helps you maximise customer lifetime value in several ways :
- Prevent switching
- Enhance engagement and motivation
- Re-engage customers
- Cross-selling, upselling
- Personalised customer loyalty incentives
The longer you retain customers, the more you can learn about them, and the more effective your lifetime value campaigns will be.
Balancing bank customer segmentation with privacy and marketing regulations
Of course, customer segmentation uses a lot of data, which raises important legal and ethical questions. First, you need to comply with data and privacy regulations, such as GDPR and CCPA. Second, you also have to consider the privacy expectations of your customers, who are increasingly aware of privacy issues and rising security threats targeting financial service providers.
If you aim to retain and maximise customer value, respecting their privacy and protecting their data are non-negotiables.
Regulators are clamping down on finance
Regulatory scrutiny towards the finance industry is intensifying, largely driven by the rise of fintech and the growing threat of cyber attacks. Not only was 2023 a record-breaking year for finance security breaches but several compromises of major US providers “exposed shortcomings in the current supervisory framework and have put considerable public pressure on banking authorities to reevaluate their supervisory and examination programs” (Deloitte).
Banks face some of the strictest consumer protections and marketing regulations, but the digital age creates new threats.
In 2022, the Consumer Financial Protection Bureau (CFPB) warned that digital marketers must comply with finance consumer protections when targeting audiences. CFPB Director Rohit Chopra said : “When Big Tech firms use sophisticated behavioural targeting techniques to market financial products, they must adhere to federal consumer financial protection laws.”
This couldn’t be more relevant to customer segmentation and the tools banks use to conduct it.
Customer data in the hands of agencies and big tech
Banks should pay attention to the words of CFPB Director Rohit Chopra when partnering with marketing agencies and choosing analytics tools. Digital marketing agencies are rarely experts in financial regulations, and tech giants like Google don’t have the best track record for adhering to them.
Google is constantly in the EU courts over its data use. In 2022, the EU ruled that the previous version of Google Analytics violated EU privacy regulations. Google Analytics 4 was promptly released but didn’t resolve all the issues.
Meanwhile, any company that inadvertently misuses Google Analytics is legally responsible for its compliance with data regulations.
Banks need a privacy-centric alternative to Google Analytics
Google’s track record with data regulation compliance is a big issue, but it’s not the only one. Google Analytics uses data sampling, which Google defines as the “practice of analysing a subset of data to uncover meaningful information from a larger data set.”
This means Google Analytics places thresholds on how much of your data it analyses — anything after that is calculated assumptions. We’ve explained why this is such a problem before, and GA4 relies on data sampling even more than the previous version.
In short, banks should question whether they can trust Google with their customer data and whether they can trust Google Analytics to provide accurate data in the first place. And they do. 80% of financial marketers say they’re concerned about ad tech bias from major providers like Google and Meta.
Matomo is the privacy-centric alternative to Google Analytics, giving you 100% data ownership and compliant web analytics. With no data sampling, Matomo provides 20-40% more data to help you make accurate, informed decisions. Get the data you need for customer segmentation without putting their data at risk.
Try Matomo for Free
Get the web insights you need, without compromising data accuracy.
Bank customer segmentation examples
Now, let’s look at some customer segments you create and layer to target specific customer groups.
Visit-based segmentation
Visit segmentation filters audiences based on the pages they visit on your website and the behaviors they exhibit—for example, first-time visitors vs. returning visitors or landing page visitors vs. blog page visitors.
If you look at HSBC’s website, you’ll see it is structured into several categories for key customer personas. One of its segments is international customers living in the US, so it has pages and resources expats, people working in the US, people studying in the US, etc.
By combining visit-based segmentation with ultra-relevant pages for specific target audiences, HSBC can track each group’s demand and interest and analyse their behaviours. It can determine which audiences are returning, which products they want, and which messages convert them.
Demographic segmentation
Demographic segmentation divides customers by attributes such as age, gender, and location. However, you can also combine these insights with other non-personal data to better understand specific audiences.
For example, in Matomo, you can segment audiences based on the language of their browser, the country they’re visiting from, and other characteristics. So, in this case, HSBC could differentiate between visitors already residing in the US and those outside of the country looking for information on moving there.
It could determine which countries they’re visiting, which languages to localise for, and which networks to run ultra-relevant social campaigns on.
Interaction-based segmentation
Interaction-based segmentation uses events and goals to segment users based on their actions on your website. For example, you can segment audiences who visit specific URLs, such as a loan application page, or those who don’t complete an action, such as failing to complete a form.
With events and goals set up, you can track the actions visitors complete before making purchases. You can monitor topical interests, page visits, content interactions, and pathways toward conversions, which feed into their customer journey.
From here, you can segment customers based on their path leading up to their first purchase, follow-up purchases, and other actions.
Purchase-based segmentation
Purchase-based segmentation allows you to analyse the customer behaviours related to their purchase history and spending habits. For example, you can track the journey of repeat customers or identify first-time buyers showing interest in other products/services.
You can implement these insights into your cross-selling and upselling campaigns with relevant messages designed to increase retention and customer lifetime value.
Get reliable website analytics for your bank customer segmentation needs
With customers switching in greater numbers, banks need to prioritise customer retention and lifetime value. Customer segmentation allows you to target specific customer groups and address their unique needs — the perfect strategy to stop them from moving to another provider.
Quality, accurate data is the key ingredient of an effective bank customer segmentation strategy. Don’t accept data sampling from Google Analytics or any other tool that limits the amount of your own data you can access. Choose a web analytics tool like Matamo that unlocks the full potential of your website analytics to get the most out of bank customer segmentation.
Matomo is trusted by over 1 million websites globally, including many banks, for its accuracy, compliance, and reliability. Discover why financial institutions rely on Matomo to meet their web analytics needs.
Start collecting the insights you need for granular, layered segmentation — without putting your bank customer data at risk. Request a demo of Matomo now.
Try Matomo for Free
21 day free trial. No credit card required.
-
A Guide to GDPR Sensitive Personal Data
13 mai 2024, par ErinThe General Data Protection Regulation (GDPR) is one of the world’s most stringent data protection laws. It provides a legal framework for collection and processing of the personal data of EU individuals.
The GDPR distinguishes between “special categories of personal data” (also referred to as “sensitive”) and other personal data and imposes stricter requirements on collection and processing of sensitive data. Understanding these differences will help your company comply with the requirements and avoid heavy penalties.
In this article, we’ll explain what personal data is considered “sensitive” according to the GDPR. We’ll also examine how a web analytics solution like Matomo can help you maintain compliance.
What is sensitive personal data ?
The following categories of data are treated as sensitive :
-
- Personal data revealing :
- Racial or ethnic origin ;
- Political opinions ;
- Religious or philosophical beliefs ;
- Trade union membership ;
- Genetic and biometric data ;
- Data concerning a person’s :
- Health ; or
- Sex life or sexual orientation.
- Personal data revealing :
Sensitive vs. non-sensitive personal data : What’s the difference ?
While both categories include information about an individual, sensitive data is seen as more private, or requiring a greater protection.
Sensitive data often carries a higher degree of risk and harm to the data subject, if the data is exposed. For example, a data breach exposing health records could lead to discrimination for the individuals involved. An insurance company could use the information to increase premiums or deny coverage.
In contrast, personal data like name or gender is considered less sensitive because it doesn’t carry the same degree of harm as sensitive data.
Unauthorised access to someone’s name alone is less likely to harm them or infringe on their fundamental rights and freedoms than an unauthorised access to their health records or biometric data. Note that financial information (e.g. credit card details) does not fall into the special categories of data.
Legality of processing
Under the GDPR, both sensitive and nonsensitive personal data are protected. However, the rules and conditions for processing sensitive data are more stringent.
Article 6 deals with processing of non-sensitive data and it states that processing is lawful if one of the six lawful bases for processing applies.
In contrast, Art. 9 of the GDPR states that processing of sensitive data is prohibited as a rule, but provides ten exceptions.
It is important to note that the lawful bases in Art. 6 are not the same as exceptions in Art. 9. For example, while performance of a contract or legitimate interest of the controller are a lawful basis for processing non-sensitive personal data, they are not included as an exception in Art. 9. What follows is that controllers are not permitted to process sensitive data on the basis of contract or legitimate interest.
The exceptions where processing of sensitive personal data is permitted (subject to additional requirements) are :
- Explicit consent : The individual has given explicit consent to processing their sensitive personal data for specified purpose(s), except where an EU member state prohibits such consent. See below for more information about explicit consent.
- Employment, social security or social protection : Processing sensitive data is necessary to perform tasks under employment, social security or social protection law.
- Vital interests : Processing sensitive data is necessary to protect the interests of a data subject or if the individual is physically or legally incapable of consenting.
- Non-for-profit bodies : Foundations, associations or nonprofits with a political, philosophical, religious or trade union aim may process the sensitive data of their members or those they are in regular contact with, in connection with their purposes (and no disclosure of the data is permitted outside the organisation, without the data subject’s consent).
- Made public : In some cases, it may be permissible to process the sensitive data of a data subject if the individual has already made it public and accessible.
- Legal claims : Processing sensitive data is necessary to establish, exercise or defend legal claims, including legal or in court proceedings.
- Public interest : Processing is necessary for reasons of substantial public interest, like preventing unlawful acts or protecting the public.
- Health or social care : Processing special category data is necessary for : preventative or occupational medicine, providing health and social care, medical diagnosis or managing healthcare systems.
- Public health : It is permissible to process sensitive data for public health reasons, like protecting against cross-border threats to health or ensuring the safety of medicinal products or medical devices.
- Archiving, research and statistics : You may process sensitive data if it’s done for archiving purposes in the public interest, scientific or historical research purposes or statistical purposes.
In addition, you must adhere to all data handling requirements set by the GDPR.
Important : Note that for any data sent that you are processing, you always need to identify a lawful basis under Art. 6. In addition, if the data sent contains sensitive data, you must comply with Art. 9.
Explicit consent
While consent is a valid lawful basis for processing non-sensitive personal data, controllers are permitted to process sensitive data only with an “explicit consent” of the data subject.
The GDPR does not define “explicit” consent, but it is accepted that it must meet all Art. 7 conditions for consent, at a higher threshold. To be “explicit” a consent requires a clear statement (oral or written) of the data subject. Consent inferred from the data subject’s actions does not meet the threshold.
The controller must retain records of the explicit consent and provide appropriate consent withdrawal method to allow the data subject to exercise their rights.
Examples of compliant and non-compliant sensitive data processing
Here are examples of when you can and can’t process sensitive data :
- When you can process sensitive data : A doctor logs sensitive data about a patient, including their name, symptoms and medicine prescribed. The hospital can process this data to provide appropriate medical care to their patients. An IoT device and software manufacturer processes their customers’ health data based on explicit consent of each customer.
- When you can’t process sensitive data : One example is when you don’t have explicit consent from a data subject. Another is when there’s no lawful basis for processing it or you are collecting personal data you simply do not need. For example, you don’t need your customer’s ethnic origin to fulfil an online order.
Other implications of processing sensitive data
If you process sensitive data, especially on a large scale, GDPR imposes additional requirements, such as having Data Privacy Impact Assessments, appointing Data Protection Officers and EU Representatives, if you are a controller based outside the EU.
Penalties for GDPR non-compliance
Mishandling sensitive data (or processing it when you’re not allowed to) can result in huge penalties. There are two tiers of GDPR fines :
- €10 million or 2% of a company’s annual revenue for less severe infringements
- €20 million or 4% of a company’s annual revenue for more severe infringements
In the first half of 2023 alone, fines imposed in the EU due to GDPR violations exceeded €1.6 billion, up from €73 million in 2019.
Examples of high-profile violations in the last few years include :
- Amazon : The Luxembourg National Commission fined the retail giant with a massive $887 million fine in 2021 for not processing personal data per the GDPR.
- Google : The National Data Protection Commission (CNIL) fined Google €50 million for not getting proper consent to display personalised ads.
- H&M : The Hamburg Commissioner for Data Protection and Freedom of Information hit the multinational clothing company with a €35.3 million fine in 2020 for unlawfully gathering and storing employees’ data in its service centre.
One of the criteria that affects the severity of a fine is “data category” — the type of personal data being processed. Companies need to take extra precautions with sensitive data, or they risk receiving more severe penalties.
What’s more, GDPR violations can negatively affect your brand’s reputation and cause you to lose business opportunities from consumers concerned about your data practices. 76% of consumers indicated they wouldn’t buy from companies they don’t trust with their personal data.
Organisations should lay out their data practices in simple terms and make this information easily accessible so customers know how their data is being handled.
Get started with GDPR-compliant web analytics
The GDPR offers a framework for securing and protecting personal data. But it also distinguishes between sensitive and non-sensitive data. Understanding these differences and applying the lawful basis for processing this data type will help ensure compliance.
Looking for a GDPR-compliant web analytics solution ?
At Matomo, we take data privacy seriously.
Our platform ensures 100% data ownership, putting you in complete control of your data. Unlike other web analytics solutions, your data remains solely yours and isn’t sold or auctioned off to advertisers.
Additionally, with Matomo, you can be confident in the accuracy of the insights you receive, as we provide reliable, unsampled data.
Matomo also fully complies with GDPR and other data privacy laws like CCPA, LGPD and more.
Start your 21-day free trial today ; no credit card required.
Disclaimer
We are not lawyers and don’t claim to be. The information provided here is to help give an introduction to GDPR. We encourage every business and website to take data privacy seriously and discuss these issues with your lawyer if you have any concerns.
Try Matomo for Free
21 day free trial. No credit card required.
-
-
Why do you need analytics for your WordPress ?
7 avril 2020, par Joselyn Khor — Analytics Tips, PluginsNot many people know this, but having a WordPress analytics tool gives you a competitive advantage. It’s also essential to the growth of your website. For many businesses, websites are the main driver of revenue and sales. In the case of blogs, it’s your first chance to make a lasting impression.
Now, maybe you’ve heard of Google Analytics or even the privacy-friendly alternative, Matomo Analytics, but have never tried them ? These are analytics platforms that help you understand your website traffic and visitors. (You can find these platforms as plugins in the WordPress directory !)
They’re important because the insights you get help you determine what changes to make to improve your website. Without them you could face a tougher time figuring out what’s working, what the issues are (and solving them before they get out of hand), and making sure you’re taking your website in the right direction.
WordPress analytics gives you an understanding of what’s actually going on.
How does a WordPress analytics plugin benefit your website ?
What this means for you is getting a toolkit to learn how to get more sales or followers and subscribers (aka conversions in analytics terms).
By getting insights into user behaviour, content performance, and how you can optimise your website, you can reach more of your goals, like increasing sales or growing your audience.
A WordPress analytics tool helps you get more traffic to your site
You get a range of features which tell you which acquisition channels are working for you like – social media, search engines, and other websites mentioning you. This helps you make an informed decision on where to focus energies (or spend) to get more of the ideal people coming through to your website.
Example : Looking through your acquisition channels and seeing that Reddit drives a lot of traffic through to your website. Since this channel seems to be working for you, you could then spend more time on Reddit posts to increase traffic.
But getting more traffic isn’t all there is to it. Once they land on your site, you want them to stay for a little longer so they are intrigued by what you’re offering. Be it a product, or awesome content.
Which leads us to …
Increasing engagement by learning about visitor behaviour
When you get a solid number of visitors on your website, it’s good to then learn about how they behave on your site. A WordPress analytics tool helps with engagement since you’re seeing what’s appealing to them, and what isn’t.
Increasing engagement is good for a few reasons.
- You end up speaking the language of your readers.
- You can make a difference with the information you’re putting out.
- You get loyal customers and believers in your organisation.
With more engaged visitors, you can build trust with them and eventually be able to convince them that your product, service, or blog is needed in their lives.
Example : Looking through entry and exit pages to see what first impression is making them stay, and what impression is making them leave. This helps you redirect efforts to give your website a better chance of getting visitors to stay longer.
Improving your content and engagement can lead to more conversions
After you get visitors engaged, it’s time to convert.
Whether you have an ecommerce site or freelance blog, you’ll need to know how to boost conversions. This simply means getting people to achieve more of the actions you’re wanting them to take on your site. Like subscribing to your newsletter or adding items to a cart.
With conversion optimization features, you’re finding out how well your website is designed to get buyers through a journey to conversion.
Example : Say you’ve created a newsletter sign up page, but you’re not getting as many sign ups as you’d like. With a web analytics tool, you can look into it further. A funnels feature could tell you how they’re getting to that page. If people can’t find your page, that could be reason for low conversion rates. Or, maybe you are getting people landing on this page, but you can’t tell why they’re not signing up. Try setting up a heatmap to see how far they’re scrolling down your page to the sign up section. Through these conversion optimization features, you can make tweaks that significantly improve conversions.
So, how does the Matomo Analytics for WordPress plugin help with all of this ?
Matomo Analytics for WordPress is a free web analytics plugin that gives you access to all the features mentioned above, right in your own WordPress dashboard. It’s completely free to use and is handy for users of all skill levels. From beginners right through to advanced analysts.
You get to move through all the stages to increase traffic, increase engagement, and convert. By using Matomo for WordPress, you put yourself in a better position to track all the needed data from your WordPress website.
You have this toolkit to improve your website for free, with a few clicks !
By getting useful insights like visitors, acquisitions, bounce rates etc. you gain a new perspective on how to improve your website so it’s better at doing what you created it to do. Getting these insights also means giving yourself the confidence to do what’s best for your website in a data-driven way.
With all this knowledge, you can be competitive, or grow enough that you’re leaving your competitors in the dust.