
Recherche avancée
Médias (91)
-
MediaSPIP Simple : futur thème graphique par défaut ?
26 septembre 2013, par
Mis à jour : Octobre 2013
Langue : français
Type : Video
-
avec chosen
13 septembre 2013, par
Mis à jour : Septembre 2013
Langue : français
Type : Image
-
sans chosen
13 septembre 2013, par
Mis à jour : Septembre 2013
Langue : français
Type : Image
-
config chosen
13 septembre 2013, par
Mis à jour : Septembre 2013
Langue : français
Type : Image
-
SPIP - plugins - embed code - Exemple
2 septembre 2013, par
Mis à jour : Septembre 2013
Langue : français
Type : Image
-
GetID3 - Bloc informations de fichiers
9 avril 2013, par
Mis à jour : Mai 2013
Langue : français
Type : Image
Autres articles (68)
-
La file d’attente de SPIPmotion
28 novembre 2010, parUne file d’attente stockée dans la base de donnée
Lors de son installation, SPIPmotion crée une nouvelle table dans la base de donnée intitulée spip_spipmotion_attentes.
Cette nouvelle table est constituée des champs suivants : id_spipmotion_attente, l’identifiant numérique unique de la tâche à traiter ; id_document, l’identifiant numérique du document original à encoder ; id_objet l’identifiant unique de l’objet auquel le document encodé devra être attaché automatiquement ; objet, le type d’objet auquel (...) -
MediaSPIP v0.2
21 juin 2013, parMediaSPIP 0.2 est la première version de MediaSPIP stable.
Sa date de sortie officielle est le 21 juin 2013 et est annoncée ici.
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Comme pour la version précédente, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...) -
Le profil des utilisateurs
12 avril 2011, parChaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)
Sur d’autres sites (6979)
-
RTMP server with OpenCV (python)
12 février 2024, par OvernoutI'm trying to process an RTMP stream in Python, using OpenCV2 but I'm not able to get OpenCV to capture it (i.e. act as RTMP server).


I can run FFmpeg/FFplay from the command line and receive the stream successfully.
What could cause OpenCV to fail opening the stream in listening mode ?


Here is my code :


import cv2

cap = cv2.VideoCapture("rtmp://0.0.0.0:8000/live", cv2.CAP_FFMPEG)

if not cap.isOpened():
 print("Cannot open video source")
 exit()



And the output :


[tcp @ 00000192c490d640] Connection to tcp://0.0.0.0:8000 failed: Error number -138 occurred
[rtmp @ 00000192c490d580] Cannot open connection tcp://0.0.0.0:8000 
Cannot open video source



edit2 : Output with debug logging turned on :


output of the python script with debug logging on:
[DEBUG:0@0.017] global videoio_registry.cpp:218 cv::`anonymous-namespace'::VideoBackendRegistry::VideoBackendRegistry VIDEOIO: Builtin backends(9): FFMPEG(1000); GSTREAMER(990); INTEL_MFX(980); MSMF(970); DSHOW(960); CV_IMAGES(950); CV_MJPEG(940); UEYE(930); OBSENSOR(920)
[DEBUG:0@0.026] global videoio_registry.cpp:242 cv::`anonymous-namespace'::VideoBackendRegistry::VideoBackendRegistry VIDEOIO: Available backends(9): FFMPEG(1000); GSTREAMER(990); INTEL_MFX(980); MSMF(970); DSHOW(960); CV_IMAGES(950); CV_MJPEG(940); UEYE(930); OBSENSOR(920)
[ INFO:0@0.031] global videoio_registry.cpp:244 cv::`anonymous-namespace'::VideoBackendRegistry::VideoBackendRegistry VIDEOIO: Enabled backends(9, sorted by priority): FFMPEG(1000); GSTREAMER(990); INTEL_MFX(980); MSMF(970); DSHOW(960); CV_IMAGES(950); CV_MJPEG(940); UEYE(930); OBSENSOR(920)
[ WARN:0@0.037] global cap.cpp:132 cv::VideoCapture::open VIDEOIO(FFMPEG): trying capture filename='rtmp://192.168.254.101:8000/live' ...
[ INFO:0@0.040] global backend_plugin.cpp:383 cv::impl::getPluginCandidates Found 2 plugin(s) for FFMPEG
[ INFO:0@0.043] global plugin_loader.impl.hpp:67 cv::plugin::impl::DynamicLib::libraryLoad load C:\Users\me\src\opencv\.venv\Lib\site-packages\cv2\opencv_videoio_ffmpeg490_64.dll => OK
[ INFO:0@0.047] global backend_plugin.cpp:50 cv::impl::PluginBackend::initCaptureAPI Found entry: 'opencv_videoio_capture_plugin_init_v1'
[ INFO:0@0.049] global backend_plugin.cpp:169 cv::impl::PluginBackend::checkCompatibility Video I/O: initialized 'FFmpeg OpenCV Video I/O Capture plugin': built with OpenCV 4.9 (ABI/API = 1/1), current OpenCV version is '4.9.0' (ABI/API = 1/1)
[ INFO:0@0.055] global backend_plugin.cpp:69 cv::impl::PluginBackend::initCaptureAPI Video I/O: plugin is ready to use 'FFmpeg OpenCV Video I/O Capture plugin'
[ INFO:0@0.058] global backend_plugin.cpp:84 cv::impl::PluginBackend::initWriterAPI Found entry: 'opencv_videoio_writer_plugin_init_v1'
[ INFO:0@0.061] global backend_plugin.cpp:169 cv::impl::PluginBackend::checkCompatibility Video I/O: initialized 'FFmpeg OpenCV Video I/O Writer plugin': built with OpenCV 4.9 (ABI/API = 1/1), current OpenCV version is '4.9.0' (ABI/API = 1/1)
[ INFO:0@0.065] global backend_plugin.cpp:103 cv::impl::PluginBackend::initWriterAPI Video I/O: plugin is ready to use 'FFmpeg OpenCV Video I/O Writer plugin'
[tcp @ 00000266b2f0d0c0] Connection to tcp://192.168.254.101:8000 failed: Error number -138 occurred
[rtmp @ 00000266b2f0cfc0] Cannot open connection tcp://192.168.254.101:8000
[ WARN:0@5.630] global cap.cpp:155 cv::VideoCapture::open VIDEOIO(FFMPEG): can't create capture
[DEBUG:0@5.632] global cap.cpp:225 cv::VideoCapture::open VIDEOIO: choosen backend does not work or wrong. Please make sure that your computer support chosen backend and OpenCV built with right flags.
Cannot open video source
[ INFO:1@5.661] global plugin_loader.impl.hpp:74 cv::plugin::impl::DynamicLib::libraryRelease unload C:\Users\me\src\opencv\.venv\Lib\site-packages\cv2\opencv_videoio_ffmpeg490_64.dll



Here is the output of cv2.getBuildInformation()


General configuration for OpenCV 4.9.0 =====================================
 Version control: 4.9.0

 Platform:
 Timestamp: 2023-12-31T11:21:12Z
 Host: Windows 10.0.17763 AMD64
 CMake: 3.24.2
 CMake generator: Visual Studio 14 2015
 CMake build tool: MSBuild.exe
 MSVC: 1900
 Configuration: Debug Release

 CPU/HW features:
 Baseline: SSE SSE2 SSE3
 requested: SSE3
 Dispatched code generation: SSE4_1 SSE4_2 FP16 AVX AVX2
 requested: SSE4_1 SSE4_2 AVX FP16 AVX2 AVX512_SKX
 SSE4_1 (16 files): + SSSE3 SSE4_1
 SSE4_2 (1 files): + SSSE3 SSE4_1 POPCNT SSE4_2
 FP16 (0 files): + SSSE3 SSE4_1 POPCNT SSE4_2 FP16 AVX
 AVX (8 files): + SSSE3 SSE4_1 POPCNT SSE4_2 AVX
 AVX2 (36 files): + SSSE3 SSE4_1 POPCNT SSE4_2 FP16 FMA3 AVX AVX2

 C/C++:
 Built as dynamic libs?: NO
 C++ standard: 11
 C++ Compiler: C:/Program Files (x86)/Microsoft Visual Studio 14.0/VC/bin/x86_amd64/cl.exe (ver 19.0.24247.2)
 C++ flags (Release): /DWIN32 /D_WINDOWS /W4 /GR /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDC_NO_DEPRECATE /D _SCL_SECURE_NO_WARNINGS /Gy /bigobj /Oi /fp:precise /EHa /wd4127 /wd4251 /wd4324 /wd4275 /wd4512 /wd4589 /wd4819 /MP /O2 /Ob2 /DNDEBUG 
 C++ flags (Debug): /DWIN32 /D_WINDOWS /W4 /GR /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDC_NO_DEPRECATE /D _SCL_SECURE_NO_WARNINGS /Gy /bigobj /Oi /fp:precise /EHa /wd4127 /wd4251 /wd4324 /wd4275 /wd4512 /wd4589 /wd4819 /MP /Zi /Ob0 /Od /RTC1 
 C Compiler: C:/Program Files (x86)/Microsoft Visual Studio 14.0/VC/bin/x86_amd64/cl.exe
 C flags (Release): /DWIN32 /D_WINDOWS /W3 /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDC_NO_DEPRECATE /D _SCL_SECURE_NO_WARNINGS /Gy /bigobj /Oi /fp:precise /MP /O2 /Ob2 /DNDEBUG 
 C flags (Debug): /DWIN32 /D_WINDOWS /W3 /D _CRT_SECURE_NO_DEPRECATE /D _CRT_NONSTDC_NO_DEPRECATE /D _SCL_SECURE_NO_WARNINGS /Gy /bigobj /Oi /fp:precise /MP /Zi /Ob0 /Od /RTC1 
 Linker flags (Release): /machine:x64 /NODEFAULTLIB:atlthunk.lib /INCREMENTAL:NO /NODEFAULTLIB:libcmtd.lib /NODEFAULTLIB:libcpmtd.lib /NODEFAULTLIB:msvcrtd.lib
 Linker flags (Debug): /machine:x64 /NODEFAULTLIB:atlthunk.lib /debug /INCREMENTAL /NODEFAULTLIB:libcmt.lib /NODEFAULTLIB:libcpmt.lib /NODEFAULTLIB:msvcrt.lib
 ccache: NO
 Precompiled headers: YES
 Extra dependencies: wsock32 comctl32 gdi32 ole32 setupapi ws2_32
 3rdparty dependencies: libprotobuf ade ittnotify libjpeg-turbo libwebp libpng libtiff libopenjp2 IlmImf zlib ippiw ippicv

 OpenCV modules:
 To be built: calib3d core dnn features2d flann gapi highgui imgcodecs imgproc ml objdetect photo python3 stitching video videoio
 Disabled: java world
 Disabled by dependency: -
 Unavailable: python2 ts
 Applications: -
 Documentation: NO
 Non-free algorithms: NO

 Windows RT support: NO

 GUI: WIN32UI
 Win32 UI: YES
 VTK support: NO

 Media I/O: 
 ZLib: build (ver 1.3)
 JPEG: build-libjpeg-turbo (ver 2.1.3-62)
 SIMD Support Request: YES
 SIMD Support: NO
 WEBP: build (ver encoder: 0x020f)
 PNG: build (ver 1.6.37)
 TIFF: build (ver 42 - 4.2.0)
 JPEG 2000: build (ver 2.5.0)
 OpenEXR: build (ver 2.3.0)
 HDR: YES
 SUNRASTER: YES
 PXM: YES
 PFM: YES

 Video I/O:
 DC1394: NO
 FFMPEG: YES (prebuilt binaries)
 avcodec: YES (58.134.100)
 avformat: YES (58.76.100)
 avutil: YES (56.70.100)
 swscale: YES (5.9.100)
 avresample: YES (4.0.0)
 GStreamer: NO
 DirectShow: YES
 Media Foundation: YES
 DXVA: YES

 Parallel framework: Concurrency

 Trace: YES (with Intel ITT)

 Other third-party libraries:
 Intel IPP: 2021.11.0 [2021.11.0]
 at: D:/a/opencv-python/opencv-python/_skbuild/win-amd64-3.7/cmake-build/3rdparty/ippicv/ippicv_win/icv
 Intel IPP IW: sources (2021.11.0)
 at: D:/a/opencv-python/opencv-python/_skbuild/win-amd64-3.7/cmake-build/3rdparty/ippicv/ippicv_win/iw
 Lapack: NO
 Eigen: NO
 Custom HAL: NO
 Protobuf: build (3.19.1)
 Flatbuffers: builtin/3rdparty (23.5.9)

 OpenCL: YES (NVD3D11)
 Include path: D:/a/opencv-python/opencv-python/opencv/3rdparty/include/opencl/1.2
 Link libraries: Dynamic load

 Python 3:
 Interpreter: C:/hostedtoolcache/windows/Python/3.7.9/x64/python.exe (ver 3.7.9)
 Libraries: C:/hostedtoolcache/windows/Python/3.7.9/x64/libs/python37.lib (ver 3.7.9)
 numpy: C:/hostedtoolcache/windows/Python/3.7.9/x64/lib/site-packages/numpy/core/include (ver 1.17.0)
 install path: python/cv2/python-3

 Python (for build): C:\hostedtoolcache\windows\Python\3.7.9\x64\python.exe

 Java: 
 ant: NO
 Java: YES (ver 1.8.0.392)
 JNI: C:/hostedtoolcache/windows/Java_Temurin-Hotspot_jdk/8.0.392-8/x64/include C:/hostedtoolcache/windows/Java_Temurin-Hotspot_jdk/8.0.392-8/x64/include/win32 C:/hostedtoolcache/windows/Java_Temurin-Hotspot_jdk/8.0.392-8/x64/include
 Java wrappers: NO
 Java tests: NO

 Install to: D:/a/opencv-python/opencv-python/_skbuild/win-amd64-3.7/cmake-install
-----------------------------------------------------------------



edit : Receiving the stream with ffplay from command line :


>ffplay.exe -i "rtmp://0.0.0.0:8000/live" -listen 1 -f flv
ffplay version 2024-02-04-git-7375a6ca7b-full_build-www.gyan.dev Copyright (c) 2003-2024 the FFmpeg developers
 built with gcc 12.2.0 (Rev10, Built by MSYS2 project)
 configuration: --enable-gpl --enable-version3 --enable-static --pkg-config=pkgconf --disable-w32threads --disable-autodetect --enable-fontconfig --enable-iconv --enable-gnutls --enable-libxml2 --enable-gmp --enable-bzlib --enable-lzma --enable-libsnappy --enable-zlib --enable-librist --enable-libsrt --enable-libssh --enable-libzmq --enable-avisynth --enable-libbluray --enable-libcaca --enable-sdl2 --enable-libaribb24 --enable-libaribcaption --enable-libdav1d --enable-libdavs2 --enable-libuavs3d --enable-libzvbi --enable-librav1e --enable-libsvtav1 --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxavs2 --enable-libxvid --enable-libaom --enable-libjxl --enable-libopenjpeg --enable-libvpx --enable-mediafoundation --enable-libass --enable-frei0r --enable-libfreetype --enable-libfribidi --enable-libharfbuzz --enable-liblensfun --enable-libvidstab --enable-libvmaf --enable-libzimg --enable-amf --enable-cuda-llvm --enable-cuvid --enable-ffnvcodec --enable-nvdec --enable-nvenc --enable-dxva2 --enable-d3d11va --enable-libvpl --enable-libshaderc --enable-vulkan --enable-libplacebo --enable-opencl --enable-libcdio --enable-libgme --enable-libmodplug --enable-libopenmpt --enable-libopencore-amrwb --enable-libmp3lame --enable-libshine --enable-libtheora --enable-libtwolame --enable-libvo-amrwbenc --enable-libcodec2 --enable-libilbc --enable-libgsm --enable-libopencore-amrnb --enable-libopus --enable-libspeex --enable-libvorbis --enable-ladspa --enable-libbs2b --enable-libflite --enable-libmysofa --enable-librubberband --enable-libsoxr --enable-chromaprint
 libavutil 58. 36.101 / 58. 36.101
 libavcodec 60. 38.100 / 60. 38.100
 libavformat 60. 20.100 / 60. 20.100
 libavdevice 60. 4.100 / 60. 4.100
 libavfilter 9. 17.100 / 9. 17.100
 libswscale 7. 6.100 / 7. 6.100
 libswresample 4. 13.100 / 4. 13.100
 libpostproc 57. 4.100 / 57. 4.100
[rtmp @ 0000018a564ed340] Unexpected stream , expecting livef=0/0
 Last message repeated 1 times
Input #0, flv, from 'rtmp://0.0.0.0:8000/live':KB sq= 0B f=0/0
 Metadata:
 fileSize : 0
 audiochannels : 2
 2.1 : false
 3.1 : false
 4.0 : false
 4.1 : false
 5.1 : false
 7.1 : false
 encoder : obs-output module (libobs version 30.0.2)
 Duration: 00:00:00.00, start: 0.000000, bitrate: N/A
 Stream #0:0: Audio: aac (LC), 48000 Hz, stereo, fltp, 163 kb/s
 Stream #0:1: Video: h264 (Constrained Baseline), yuv420p(tv, bt709, progressive), 1280x720 [SAR 1:1 DAR 16:9], 2560 kb/s, 30 fps, 30 tbr, 1k tbn
 7.54 A-V: -0.024 fd= 18 aq= 24KB vq= 498KB sq= 0B f=0/0



-
A Guide to App Analytics Tools that Drive Growth
7 mars, par Daniel Crough — App AnalyticsMobile apps are big business, generating £438 billion in global revenue between in-app purchases (38%) and ad revenue (60%). And with 96% of apps relying on in-app monetisation, the competition is fierce.
To succeed, app developers and marketers need strong app analytics tools to understand their customers’ experiences and the effectiveness of their development efforts.
This article discusses app analytics, how it works, the importance and benefits of mobile app analytics tools, key metrics to track, and explores five of the best app analytics tools on the market.
What are app analytics tools ?
Mobile app analytics tools are software solutions that provide insights into how users interact with mobile applications. They track user behaviour, engagement and in-app events to reveal what’s working well and what needs improvement.
Insights gained from mobile app analytics help companies make more informed decisions about app development, marketing campaigns and monetisation strategies.
What do app analytics tools do ?
App analytics tools embed a piece of code, called a software development kit (SDK), into an app. These SDKs provide the essential infrastructure for the following functions :
- Data collection : The SDK collects data within your app and records user actions and events, like screen views, button clicks, and in-app purchases.
- Data filtering : SDKs often include mechanisms to filter data, ensuring that only relevant information is collected.
- Data transmission : Once collected and filtered, the SDK securely transmits the data to an analytics server. The SDK provider can host this server (like Firebase or Amplitude), or you can host it on-premise.
- Data processing and analysis : Servers capture, process and analyse large stores of data and turn it into useful information.
- Visualisation and reporting : Dashboards, charts and graphs present processed data in a user-friendly format.
Six ways mobile app analytics tools fuel marketing success and drive product growth
Mobile app analytics tools are vital in driving product development, enhancing user experiences, and achieving business objectives.
#1. Improving user understanding
The better a business understands its customers, the more likely it is to succeed. For mobile apps, that means understanding how and why people use them.
Mobile analytics tools provide detailed insights into user behaviours and preferences regarding apps. This knowledge helps marketing teams create more targeted messaging, detailed customer journey maps and improve user experiences.
It also helps product teams understand the user experience and make improvements based on those insights.
For example, ecommerce companies might discover that users in a particular area are more likely to buy certain products. This allows the company to tailor its offers and promotions to target the audience segments most likely to convert.
#2 Optimising monetisation strategies for increased revenue and user retention
In-app purchases and advertising make up 38% and 60% of mobile app revenue worldwide, respectively. App analytics tools provide insights companies need to optimise app monetisation by :
- Analysing purchase patterns to identify popular products and understand pricing sensitivities.
- Tracking in-app behaviour to identify opportunities for enhancing user engagement.
App analytics can track key metrics like visit duration, user flow, and engagement patterns. These metrics provide critical information about user experiences and can help identify areas for improvement.
How meaningful are the impacts ?
Duolingo, the popular language learning app, reported revenue growth of 45% and an increase in daily active users (DAU) of 65% in its Q4 2023 financial report. The company attributed this success to its in-house app analytics platform.
#3. Understanding user experiences
Mobile app analytics tools track the performance of user interactions within your app, such as :
- Screen views : Which screens users visit most frequently
- User flow : How users navigate through your app
- Session duration : How long users spend in your app
- Interaction events : Which buttons, features, and functions users engage with most
Knowing how users interact with your app can help refine your approach, optimise your efforts, and drive more conversions.
#4. Personalising user experiences
A recent McKinsey survey showed that 71% of users expect personalised app experiences. Product managers must stay on top of this since 76% of users get frustrated if they don’t receive the personalisation they expect.
Personalisation on mobile platforms requires data capture and analysis. Mobile analytics platforms can provide the data to personalise the user onboarding process, deliver targeted messages and recommend relevant content or offers.
Spotify is a prime example of personalisation done right. A recent case study by Pragmatic Institute attributed the company’s growth to over 500 million active daily users to its ability to capture, analyse and act on :
- Search behaviour
- Individual music preferences
- Playlist data
- Device usage
- Geographical location
The streaming service uses its mobile app analytics software to turn this data into personalised music recommendations for its users. Spotify also has an in-house analytics tool called Spotify Premium Analytics, which helps artists and creators better understand their audience.
#5. Enhancing app performance
App analytics tools can help identify performance issues that might be affecting user experience. By monitoring metrics like load time and app performance, developers can pinpoint areas that need improvement.
Performance optimisation is crucial for user retention. According to Google research, 53% of mobile site visits are abandoned if pages take longer than three seconds to load. While this statistic refers to websites, similar principles apply to apps—users expect fast, responsive experiences.
Analytics data can help developers prioritise performance improvements by showing which screens or features users interact with most frequently, allowing teams to focus their optimisation efforts where they’ll have the greatest impact.
#6. Identifying growth opportunities
App analytics tools can reveal untapped opportunities for growth by highlighting :
- Features users engage with most
- Underutilised app sections that might benefit from redesign
- Common user paths that could be optimised
- Moments where users tend to drop off
This intelligence helps product teams make data-informed decisions about future development priorities, feature enhancements, and potential new offerings.
For example, a streaming service might discover through analytics that users who create playlists have significantly higher retention rates. This insight could lead to development of enhanced playlist functionality to encourage more users to create them, ultimately boosting overall retention.
Key app metrics to track
Using mobile analytics tools, you can track dozens of key performance indicators (KPIs) that measure everything from customer engagement to app performance. This section focuses on the most important KPIs for app analytics, classified into three categories :
- App performance KPIs
- User engagement KPIs
- Business impact KPIs
While the exact metrics to track will vary based on your specific goals, these fundamental KPIs form the foundation of effective app analytics.
App performance KPIs
App performance metrics tell you whether an app is reliable and operating properly. They help product managers identify and address technical issues that may negatively impact user experiences.
Some key metrics to assess performance include :
- Screen load time : How quickly screens load within your app
- App stability : How often your app crashes or experiences errors
- Response time : How quickly your app responds to user interactions
- Network performance : How efficiently your app handles data transfers
User engagement KPIs
Engagement KPIs provide insights into how users interact with an app. These metrics help you understand user behaviour and make UX improvements.
Important engagement metrics include :
- Returning visitors : A measure of how often users return to an app
- Visit duration : How long users spend in your app per session
- User flow : Visualisation of the paths users take through your app, offering insights into navigation patterns
- Event tracking : Specific interactions users have with app elements
- Screen views : Which screens are viewed most frequently
Business impact KPIs
Business impact KPIs connect app analytics to business outcomes, helping demonstrate the app’s value to the organisation.
Key business impact metrics include :
- Conversion events : Completion of desired actions within your app
- Goal completions : Tracking when users complete specific objectives
- In-app purchases : Monitoring revenue from within the app
- Return on investment : Measuring the business value generated relative to development costs
Privacy and app analytics : A delicate balance
While app analytics tools can be a rich source of user data, they must be used responsibly. Tracking user in-app behaviour and collecting user data, especially without consent, can raise privacy concerns and erode user trust. It can also violate data privacy laws like the GDPR in Europe or the OCPA, FDBR and TDPSA in the US.
With that in mind, it’s wise to choose user-tracking tools that prioritise user privacy while still collecting enough data for reliable analysis.
Matomo is a privacy-focused web and app analytics solution that allows you to collect and analyse user data while respecting user privacy and following data protection rules like GDPR.
The five best app analytics tools to prove marketing value
In this section, we’ll review the five best app analytics tools based on their features, pricing and suitability for different use cases.
Matomo — Best for privacy-compliant app analytics
Matomo app analytics is a powerful, open-source platform that prioritises data privacy and compliance.
It offers a suite of features for tracking user engagement and conversions across websites, mobile apps and intranets.
Key features
- Complete data ownership : Full control over your analytics data with no third-party access
- User flow analysis : Track user journeys across different screens in your app
- Custom event tracking : Monitor specific user interactions with customisable events
- Ecommerce tracking : Measure purchases and product interactions
- Goal conversion monitoring : Track completion of important user actions
- Unified analytics : View web and app analytics in one platform for a complete digital picture
Benefits
- Eliminate compliance risks without sacrificing insights
- Get accurate data with no sampling or data manipulation
- Choose between self-hosting or cloud deployment
- Deploy one analytics solution across your digital properties (web and app) for a single source of truth
Pricing
Plan Price Cloud Starts at £19/month On-Premise Free Matomo is a smart choice for businesses that value data privacy and want complete control over their analytics data. It’s particularly well-suited for organisations in highly regulated industries, like banking.
While Matomo’s app analytics features focus on core analytics capabilities, its privacy-first approach offers unique advantages. For organisations already using Matomo for web analytics, extending to mobile creates a unified analytics ecosystem with consistent privacy standards across all digital touchpoints, giving organisations a complete picture of the customer journey.
Firebase — Best for Google services integration
Firebase is the mobile app version of Google Analytics. It’s the most popular app analytics tool on the market, with over 99% of Android apps and 77% of iOS apps using Firebase.
Firebase is popular because it works well with other Google services. It also has many features, like crash reporting, A/B testing and user segmentation.
Pricing
Plan Price Spark Free Blaze Pay-as-you-go based on usage Custom Bespoke pricing for high-volume enterprise users Adobe Analytics — Best for enterprise app analytics
Adobe Analytics is an enterprise-grade analytics solution that provides valuable insights into user behaviour and app performance.
It’s part of the Adobe Marketing Cloud and integrates easily with other Adobe products. Adobe Analytics is particularly well-suited for large organisations with complex analytics needs.
Pricing
Plan Price Select Pricing on quote Prime Pricing on quote Ultimate Pricing on quote While you must request a quote for pricing, Scandiweb puts Adobe Analytics at £2,000/mo–£2,500/mo for most companies, making it an expensive option.
Apple App Analytics — Best for iOS app analysis
Apple App Analytics is a free, built-in analytics tool for iOS app developers.
This analytics platform provides basic insights into user engagement, app performance and marketing campaigns. It has fewer features than other tools on this list, but it’s a good place for iOS developers who want to learn how their apps work.
Pricing
Apple Analytics is free.
Amplitude — Best for product analytics
Amplitude is a product analytics platform that helps businesses understand user behaviour and build better products.
It excels at tracking user journeys, identifying user segments and measuring the impact of product changes. Amplitude is a good choice for product managers and data analysts who want to make informed decisions about product development.
Pricing
Plan Price Starter Free Plus From £49/mo Growth Pricing on quote Choose Matomo’s app analytics to unlock growth
App analytics tools help marketers and product development teams understand user experiences, improve app performance and enhance products. Some of the best app analytics tools available for 2025 include Matomo, Firebase and Amplitude.
However, as you evaluate your options, consider taking a privacy-first approach to app data collection and analysis, especially if you’re in a highly regulated industry like banking or fintech. Matomo Analytics offers a powerful and ethical solution that allows you to gain valuable insights while respecting user privacy.
Ready to take control of your app analytics ? Start your 21-day free trial.
-
FFmpeg Could not write header (incorrect codec parameters ?) : Invalid data found when processing input [closed]
14 juillet 2024, par cookieThe command


ffmpeg -v verbose -i in.mkv -c copy -y out.mkv



produces the following error :


ffmpeg version 7.0.1-full_build-www.gyan.dev Copyright (c) 2000-2024 the FFmpeg developers
 built with gcc 13.2.0 (Rev5, Built by MSYS2 project)
 configuration: --enable-gpl --enable-version3 --enable-static --disable-w32threads --disable-autodetect --enable-fontconfig --enable-iconv --enable-gnutls --enable-libxml2 --enable-gmp --enable-bzlib --enable-lzma --enable-libsnappy --enable-zlib --enable-librist --enable-libsrt --enable-libssh --enable-libzmq --enable-avisynth --enable-libbluray --enable-libcaca --enable-sdl2 --enable-libaribb24 --enable-libaribcaption --enable-libdav1d --enable-libdavs2 --enable-libuavs3d --enable-libxevd --enable-libzvbi --enable-librav1e --enable-libsvtav1 --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxavs2 --enable-libxeve --enable-libxvid --enable-libaom --enable-libjxl --enable-libopenjpeg --enable-libvpx --enable-mediafoundation --enable-libass --enable-frei0r --enable-libfreetype --enable-libfribidi --enable-libharfbuzz --enable-liblensfun --enable-libvidstab --enable-libvmaf --enable-libzimg --enable-amf --enable-cuda-llvm --enable-cuvid --enable-dxva2 --enable-d3d11va --enable-d3d12va --enable-ffnvcodec --enable-libvpl --enable-nvdec --enable-nvenc --enable-vaapi --enable-libshaderc --enable-vulkan --enable-libplacebo --enable-opencl --enable-libcdio --enable-libgme --enable-libmodplug --enable-libopenmpt --enable-libopencore-amrwb --enable-libmp3lame --enable-libshine --enable-libtheora --enable-libtwolame --enable-libvo-amrwbenc --enable-libcodec2 --enable-libilbc --enable-libgsm --enable-libopencore-amrnb --enable-libopus --enable-libspeex --enable-libvorbis --enable-ladspa --enable-libbs2b --enable-libflite --enable-libmysofa --enable-librubberband --enable-libsoxr --enable-chromaprint
 libavutil 59. 8.100 / 59. 8.100
 libavcodec 61. 3.100 / 61. 3.100
 libavformat 61. 1.100 / 61. 1.100
 libavdevice 61. 1.100 / 61. 1.100
 libavfilter 10. 1.100 / 10. 1.100
 libswscale 8. 1.100 / 8. 1.100
 libswresample 5. 1.100 / 5. 1.100
 libpostproc 58. 1.100 / 58. 1.100
[hevc @ 00000133b5bb5040] Invalid default display window
Input #0, matroska,webm, from 'in.mkv':
 Metadata:
 encoder : libebml v1.3.0 + libmatroska v1.4.1
 creation_time : 2015-03-20T14:07:27.000000Z
 Duration: 00:24:11.75, start: 0.000000, bitrate: 5185 kb/s
 Chapters:
 Chapter #0:0: start 0.000000, end 48.047000
 Metadata:
 title : Chapter 01
 Chapter #0:1: start 48.047000, end 137.846000
 Metadata:
 title : Chapter 02
 Chapter #0:2: start 137.846000, end 535.868000
 Metadata:
 title : Chapter 03
 Chapter #0:3: start 535.868000, end 1330.871000
 Metadata:
 title : Chapter 04
 Chapter #0:4: start 1330.871000, end 1420.877000
 Metadata:
 title : Chapter 05
 Chapter #0:5: start 1420.877000, end 1451.741000
 Metadata:
 title : Chapter 06
 Chapter #0:6: start 1451.741000, end 1451.745000
 Metadata:
 title : Chapter 07
 Stream #0:0: Video: hevc (Main 10), 1 reference frame, yuv420p10le(tv, left), 1920x1080, SAR 1:1 DAR 16:9, 23.98 fps, 23.98 tbr, 1k tbn (default)
 Metadata:
 _STATISTICS_WRITING_APP: mkvmerge v7.0.0 ('Where We Going') 32bit built on Jun 9 2014 15:08:34
 _STATISTICS_WRITING_APP-eng: mkvmerge v7.0.0 ('Where We Going') 32bit built on Jun 9 2014 15:08:34
 _STATISTICS_WRITING_DATE_UTC: 2015-03-20 14:07:27
 _STATISTICS_WRITING_DATE_UTC-eng: 2015-03-20 14:07:27
 _STATISTICS_TAGS: BPS DURATION NUMBER_OF_FRAMES NUMBER_OF_BYTES
 _STATISTICS_TAGS-eng: BPS DURATION NUMBER_OF_FRAMES NUMBER_OF_BYTES
 BPS : 3754023
 BPS-eng : 3754023
 DURATION : 00:24:11.742000000
 DURATION-eng : 00:24:11.742000000
 NUMBER_OF_FRAMES: 34807
 NUMBER_OF_FRAMES-eng: 34807
 NUMBER_OF_BYTES : 681234123
 NUMBER_OF_BYTES-eng: 681234123
 Stream #0:1(jpn): Audio: flac, 48000 Hz, stereo, s32 (24 bit) (default)
 Metadata:
 _STATISTICS_WRITING_APP: mkvmerge v7.0.0 ('Where We Going') 32bit built on Jun 9 2014 15:08:34
 _STATISTICS_WRITING_APP-eng: mkvmerge v7.0.0 ('Where We Going') 32bit built on Jun 9 2014 15:08:34
 _STATISTICS_WRITING_DATE_UTC: 2015-03-20 14:07:27
 _STATISTICS_WRITING_DATE_UTC-eng: 2015-03-20 14:07:27
 _STATISTICS_TAGS: BPS DURATION NUMBER_OF_FRAMES NUMBER_OF_BYTES
 _STATISTICS_TAGS-eng: BPS DURATION NUMBER_OF_FRAMES NUMBER_OF_BYTES
 BPS : 1429414
 BPS-eng : 1429414
 DURATION : 00:24:11.745000000
 DURATION-eng : 00:24:11.745000000
 NUMBER_OF_FRAMES: 17013
 NUMBER_OF_FRAMES-eng: 17013
 NUMBER_OF_BYTES : 259393130
 NUMBER_OF_BYTES-eng: 259393130
[out#0/matroska @ 00000133b5bb5a40] No explicit maps, mapping streams automatically...
[vost#0:0/copy @ 00000133b5c2f580] Created video stream from input stream 0:0
[aost#0:1/copy @ 00000133b5bf1680] Created audio stream from input stream 0:1
Stream mapping:
 Stream #0:0 -> #0:0 (copy)
 Stream #0:1 -> #0:1 (copy)
[out#0/matroska @ 00000133b5bb5a40] Could not write header (incorrect codec parameters ?): Invalid data found when processing input
[AVIOContext @ 00000133b5c27940] Statistics: 291 bytes written, 0 seeks, 1 writeouts
[AVIOContext @ 00000133b5b97980] Statistics: 66432 bytes read, 2 seeks
Conversion failed!



Originally, I was trying to add a subtitle to
in.mkv
, but I keep encountering this error. When I add the subtitle to another MKV file, it works fine, so I believe the problem lies within.mkv
.

Troubleshooting


Output only video stream produce the same error :


ffmpeg -i in.mkv -map 0:v:0 -c copy out.mkv



Output only audio stream works fine :


ffmpeg -i in.mkv -map 0:a:0 -c copy out.mkv



Output as mp4 got no error, but the output file is unplayable :


ffmpeg -i in.mkv -c copy -strict -2 out.mp4



Re-encoding works fine :


ffmpeg -i in.mkv -c:v libx265 -c:a copy out.mkv



How can I fix the video stream in
in.mkv
so that I can add a subtitle stream and remux the file without re-encoding the video ? Any insights or suggestions on handling this error would be greatly appreciated.