Recherche avancée

Médias (91)

Autres articles (66)

  • Soumettre améliorations et plugins supplémentaires

    10 avril 2011

    Si vous avez développé une nouvelle extension permettant d’ajouter une ou plusieurs fonctionnalités utiles à MediaSPIP, faites le nous savoir et son intégration dans la distribution officielle sera envisagée.
    Vous pouvez utiliser la liste de discussion de développement afin de le faire savoir ou demander de l’aide quant à la réalisation de ce plugin. MediaSPIP étant basé sur SPIP, il est également possible d’utiliser le liste de discussion SPIP-zone de SPIP pour (...)

  • Le profil des utilisateurs

    12 avril 2011, par

    Chaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
    L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)

  • XMP PHP

    13 mai 2011, par

    Dixit Wikipedia, XMP signifie :
    Extensible Metadata Platform ou XMP est un format de métadonnées basé sur XML utilisé dans les applications PDF, de photographie et de graphisme. Il a été lancé par Adobe Systems en avril 2001 en étant intégré à la version 5.0 d’Adobe Acrobat.
    Étant basé sur XML, il gère un ensemble de tags dynamiques pour l’utilisation dans le cadre du Web sémantique.
    XMP permet d’enregistrer sous forme d’un document XML des informations relatives à un fichier : titre, auteur, historique (...)

Sur d’autres sites (6303)

  • Revision 5e935126a6 : Add intra complexity and brightness weight to first pass. The aim of this patch

    4 novembre 2014, par Paul Wilkins

    Changed Paths :
     Modify /vp9/encoder/vp9_firstpass.c


     Modify /vp9/encoder/vp9_firstpass.h



    Add intra complexity and brightness weight to first pass.

    The aim of this patch is to apply a positive weighting to
    frames that have a significant number of blocks that are
    of low spatial complexity and are dark. The rationale behind
    this is that artifacts tend to be more visible in such frames.

    In this patch the weight is only applied in regard to the distribution
    of bits between frames. Hence if all the frames share similar
    characteristics (as is the case for most of our short test clips) there
    will be little or no net effect.

    However, the effect can be seen on some longer form test content.

    For example Tears of steel baseline test :
    2323.09 Kbit/s opsnr 39.915 ssim 74.729
    With this patch :-
    2213.34 Kbit/s opsnr 39.963 ssim 74.808
    (Sligtly better metrics and about 5% smaller)

    The weighting may well need some further tuning along side changes
    to the aq modes.

    Change-Id : Ieced379bca03938166ab87b2b97f55d94948904c

  • Evolution #4753 : Styles du privé : listes d’objets (suite des boîtes et des formulaires)

    4 mai 2021

    Ok merci pour les retours, je vais donc tenter cette piste pour affiche milieu.

    Pour les contrastes oui il faudra vérifier.
    Déjà j’ai un peu foncé tous les liens dans l’ensemble, il étaient signalés comme pas assez contrastés par l’outil de firefox (donc maintenant c’est —spip-color-theme-dark).
    Et pour les boutons le truc c’est qu’ils sont en opacity : 0.6 et passent en 1.0 au survol.
    À revoir peut-être.

    Le (+) sur "ajouter cet auteur" me parait disgracieux quand même

    Pareil, je crois bien que j’en avais enlevé, mais ils sont revenus par la petite porte.

  • Developing MobyCAIRO

    26 mai 2021, par Multimedia Mike — General

    I recently published a tool called MobyCAIRO. The ‘CAIRO’ part stands for Computer-Assisted Image ROtation, while the ‘Moby’ prefix refers to its role in helping process artifact image scans to submit to the MobyGames database. The tool is meant to provide an accelerated workflow for rotating and cropping image scans. It works on both Windows and Linux. Hopefully, it can solve similar workflow problems for other people.

    As of this writing, MobyCAIRO has not been tested on Mac OS X yet– I expect some issues there that should be easily solvable if someone cares to test it.

    The rest of this post describes my motivations and how I arrived at the solution.

    Background
    I have scanned well in excess of 2100 images for MobyGames and other purposes in the past 16 years or so. The workflow looks like this :


    Workflow diagram

    Image workflow


    It should be noted that my original workflow featured me manually rotating the artifact on the scanner bed in order to ensure straightness, because I guess I thought that rotate functions in image editing programs constituted dark, unholy magic or something. So my workflow used to be even more arduous :


    Longer workflow diagram

    I can’t believe I had the patience to do this for hundreds of scans


    Sometime last year, I was sitting down to perform some more scanning and found myself dreading the oncoming tedium of straightening and cropping the images. This prompted a pivotal question :


    Why can’t a computer do this for me ?

    After all, I have always been a huge proponent of making computers handle the most tedious, repetitive, mind-numbing, and error-prone tasks. So I did some web searching to find if there were any solutions that dealt with this. I also consulted with some like-minded folks who have to cope with the same tedious workflow.

    I came up empty-handed. So I endeavored to develop my own solution.

    Problem Statement and Prior Work

    I want to develop a workflow that can automatically rotate an image so that it is straight, and also find the most likely crop rectangle, uniformly whitening the area outside of the crop area (in the case of circles).

    As mentioned, I checked to see if any other programs can handle this, starting with my usual workhorse, Photoshop Elements. But I can’t expect the trimmed down version to do everything. I tried to find out if its big brother could handle the task, but couldn’t find a definitive answer on that. Nor could I find any other tools that seem to take an interest in optimizing this particular workflow.

    When I brought this up to some peers, I received some suggestions, including an idea that the venerable GIMP had a feature like this, but I could not find any evidence. Further, I would get responses of “Program XYZ can do image rotation and cropping.” I had to tamp down on the snark to avoid saying “Wow ! An image editor that can perform rotation AND cropping ? What a game-changer !” Rotation and cropping features are table stakes for any halfway competent image editor for the last 25 or so years at least. I am hoping to find or create a program which can lend a bit of programmatic assistance to the task.

    Why can’t other programs handle this ? The answer seems fairly obvious : Image editing tools are general tools and I want a highly customized workflow. It’s not reasonable to expect a turnkey solution to do this.

    Brainstorming An Approach
    I started with the happiest of happy cases— A disc that needed archiving (a marketing/press assets CD-ROM from a video game company, contents described here) which appeared to have some pretty clear straight lines :


    Ubisoft 2004 Product Catalog CD-ROM

    My idea was to try to find straight lines in the image and then rotate the image so that the image is parallel to the horizontal based on the longest single straight line detected.

    I just needed to figure out how to find a straight line inside of an image. Fortunately, I quickly learned that this is very much a solved problem thanks to something called the Hough transform. As a bonus, I read that this is also the tool I would want to use for finding circles, when I got to that part. The nice thing about knowing the formal algorithm to use is being able to find efficient, optimized libraries which already implement it.

    Early Prototype
    A little searching for how to perform a Hough transform in Python led me first to scikit. I was able to rapidly produce a prototype that did some basic image processing. However, running the Hough transform directly on the image and rotating according to the longest line segment discovered turned out not to yield expected results.


    Sub-optimal rotation

    It also took a very long time to chew on the 3300×3300 raw image– certainly longer than I care to wait for an accelerated workflow concept. The key, however, is that you are apparently not supposed to run the Hough transform on a raw image– you need to compute the edges first, and then attempt to determine which edges are ‘straight’. The recommended algorithm for this step is the Canny edge detector. After applying this, I get the expected rotation :


    Perfect rotation

    The algorithm also completes in a few seconds. So this is a good early result and I was feeling pretty confident. But, again– happiest of happy cases. I should also mention at this point that I had originally envisioned a tool that I would simply run against a scanned image and it would automatically/magically make the image straight, followed by a perfect crop.

    Along came my MobyGames comrade Foxhack to disabuse me of the hope of ever developing a fully automated tool. Just try and find a usefully long straight line in this :


    Nascar 07 Xbox Scan, incorrectly rotated

    Darn it, Foxhack…

    There are straight edges, to be sure. But my initial brainstorm of rotating according to the longest straight edge looks infeasible. Further, it’s at this point that we start brainstorming that perhaps we could match on ratings badges such as the standard ESRB badges omnipresent on U.S. video games. This gets into feature detection and complicates things.

    This Needs To Be Interactive
    At this point in the effort, I came to terms with the fact that the solution will need to have some element of interactivity. I will also need to get out of my safe Linux haven and figure out how to develop this on a Windows desktop, something I am not experienced with.

    I initially dreamed up an impressive beast of a program written in C++ that leverages Windows desktop GUI frameworks, OpenGL for display and real-time rotation, GPU acceleration for image analysis and processing tricks, and some novel input concepts. I thought GPU acceleration would be crucial since I have a fairly good GPU on my main Windows desktop and I hear that these things are pretty good at image processing.

    I created a list of prototyping tasks on a Trello board and made a decent amount of headway on prototyping all the various pieces that I would need to tie together in order to make this a reality. But it was ultimately slowgoing when you can only grab an hour or 2 here and there to try to get anything done.

    Settling On A Solution
    Recently, I was determined to get a set of old shareware discs archived. I ripped the data a year ago but I was blocked on the scanning task because I knew that would also involve tedious straightening and cropping. So I finally got all the scans done, which was reasonably quick. But I was determined to not manually post-process them.

    This was fairly recent, but I can’t quite recall how I managed to come across the OpenCV library and its Python bindings. OpenCV is an amazing library that provides a significant toolbox for performing image processing tasks. Not only that, it provides “just enough” UI primitives to be able to quickly create a basic GUI for your program, including image display via multiple windows, buttons, and keyboard/mouse input. Furthermore, OpenCV seems to be plenty fast enough to do everything I need in real time, just with (accelerated where appropriate) CPU processing.

    So I went to work porting the ideas from the simple standalone Python/scikit tool. I thought of a refinement to the straight line detector– instead of just finding the longest straight edge, it creates a histogram of 360 rotation angles, and builds a list of lines corresponding to each angle. Then it sorts the angles by cumulative line length and allows the user to iterate through this list, which will hopefully provide the most likely straightened angle up front. Further, the tool allows making fine adjustments by 1/10 of an angle via the keyboard, not the mouse. It does all this while highlighting in red the straight line segments that are parallel to the horizontal axis, per the current candidate angle.


    MobyCAIRO - rotation interface

    The tool draws a light-colored grid over the frame to aid the user in visually verifying the straightness of the image. Further, the program has a mode that allows the user to see the algorithm’s detected edges :


    MobyCAIRO - show detected lines

    For the cropping phase, the program uses the Hough circle transform in a similar manner, finding the most likely circles (if the image to be processed is supposed to be a circle) and allowing the user to cycle among them while making precise adjustments via the keyboard, again, rather than the mouse.


    MobyCAIRO - assisted circle crop

    Running the Hough circle transform is a significantly more intensive operation than the line transform. When I ran it on a full 3300×3300 image, it ran for a long time. I didn’t let it run longer than a minute before forcibly ending the program. Is this approach unworkable ? Not quite– It turns out that the transform is just as effective when shrinking the image to 400×400, and completes in under 2 seconds on my Core i5 CPU.

    For rectangular cropping, I just settled on using OpenCV’s built-in region-of-interest (ROI) facility. I tried to intelligently find the best candidate rectangle and allow fine adjustments via the keyboard, but I wasn’t having much success, so I took a path of lesser resistance.

    Packaging and Residual Weirdness
    I realized that this tool would be more useful to a broader Windows-using base of digital preservationists if they didn’t have to install Python, establish a virtual environment, and install the prerequisite dependencies. Thus, I made the effort to figure out how to wrap the entire thing up into a monolithic Windows EXE binary. It is available from the project’s Github release page (another thing I figured out for the sake of this project !).

    The binary is pretty heavy, weighing in at a bit over 50 megabytes. You might advise using compression– it IS compressed ! Before I figured out the --onefile command for pyinstaller.exe, the generated dist/ subdirectory was 150 MB. Among other things, there’s a 30 MB FORTRAN BLAS library packaged in !

    Conclusion and Future Directions
    Once I got it all working with a simple tkinter UI up front in order to select between circle and rectangle crop modes, I unleashed the tool on 60 or so scans in bulk, using the Windows forfiles command (another learning experience). I didn’t put a clock on the effort, but it felt faster. Of course, I was livid with proudness the whole time because I was using my own tool. I just wish I had thought of it sooner. But, really, with 2100+ scans under my belt, I’m just getting started– I literally have thousands more artifacts to scan for preservation.

    The tool isn’t perfect, of course. Just tonight, I threw another scan at MobyCAIRO. Just go ahead and try to find straight lines in this specimen :


    Reading Who? Reading You! CD-ROM

    I eventually had to use the text left and right of center to line up against the grid with the manual keyboard adjustments. Still, I’m impressed by how these computer vision algorithms can see patterns I can’t, highlighting lines I never would have guessed at.

    I’m eager to play with OpenCV some more, particularly the video processing functions, perhaps even some GPU-accelerated versions.

    The post Developing MobyCAIRO first appeared on Breaking Eggs And Making Omelettes.