Recherche avancée

Médias (91)

Autres articles (67)

  • Participer à sa documentation

    10 avril 2011

    La documentation est un des travaux les plus importants et les plus contraignants lors de la réalisation d’un outil technique.
    Tout apport extérieur à ce sujet est primordial : la critique de l’existant ; la participation à la rédaction d’articles orientés : utilisateur (administrateur de MediaSPIP ou simplement producteur de contenu) ; développeur ; la création de screencasts d’explication ; la traduction de la documentation dans une nouvelle langue ;
    Pour ce faire, vous pouvez vous inscrire sur (...)

  • MediaSPIP v0.2

    21 juin 2013, par

    MediaSPIP 0.2 est la première version de MediaSPIP stable.
    Sa date de sortie officielle est le 21 juin 2013 et est annoncée ici.
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Comme pour la version précédente, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • Mise à disposition des fichiers

    14 avril 2011, par

    Par défaut, lors de son initialisation, MediaSPIP ne permet pas aux visiteurs de télécharger les fichiers qu’ils soient originaux ou le résultat de leur transformation ou encodage. Il permet uniquement de les visualiser.
    Cependant, il est possible et facile d’autoriser les visiteurs à avoir accès à ces documents et ce sous différentes formes.
    Tout cela se passe dans la page de configuration du squelette. Il vous faut aller dans l’espace d’administration du canal, et choisir dans la navigation (...)

Sur d’autres sites (6468)

  • C - Transcoding to UDP using FFmpeg ?

    30 avril 2013, par golmschenk

    I'm trying to use the FFmpeg libraries to take an existing video file and stream it over a UDP connection. Specifically, I've been looking at the muxing.c and demuxing.c example files in the source code doc/example directory of FFmpeg. The demuxing file presents code which allows an input video to be converted into the video and audio streams. The muxing file presents code which creates fake data and can already be output to a UDP connection as I would like. I've begun work combining the two. Below can be found my code which is basically a copy of the muxing file with some parts replaced/appended with parts of the demuxing file. Unfortunately I'm running into plenty of complications attempting my goal through this approach. Is there an existing source code example which does the transcoding I'm looking for ? Or at least a tutorial on how one might create this ? If not, at least a few pointers might be helpful in directing my work in combing the two files to achieve my goal. Specifically, I'm getting the error :

    [NULL @ 0x23b4040] Unable to find a suitable output format for 'udp://localhost:7777'
    Could not deduce output format from file extension: using MPEG.
    Output #0, mpeg, to 'udp://localhost:7777':

    Even though the muxing file could accept UDP formats. Any suggestions ? Thank you much !

    #include
    #include
    #include
    #include

    #include <libavutil></libavutil>mathematics.h>
    #include <libavformat></libavformat>avformat.h>
    #include <libswscale></libswscale>swscale.h>

    /* 5 seconds stream duration */
    #define STREAM_DURATION   200.0
    #define STREAM_FRAME_RATE 25 /* 25 images/s */
    #define STREAM_NB_FRAMES  ((int)(STREAM_DURATION * STREAM_FRAME_RATE))
    #define STREAM_PIX_FMT    AV_PIX_FMT_YUV420P /* default pix_fmt */

    //FROM DE
    static AVFormatContext *fmt_ctx = NULL;
    static AVCodecContext *video_dec_ctx = NULL, *audio_dec_ctx;
    static AVStream *video_stream = NULL, *audio_stream = NULL;
    static const char *src_filename = NULL;
    static const char *video_dst_filename = NULL;
    static const char *audio_dst_filename = NULL;
    static FILE *video_dst_file = NULL;
    static FILE *audio_dst_file = NULL;

    static uint8_t *video_dst_data[4] = {NULL};
    static int      video_dst_linesize[4];
    static int video_dst_bufsize;

    static uint8_t **audio_dst_data = NULL;
    static int       audio_dst_linesize;
    static int audio_dst_bufsize;

    static int video_stream_idx = -1, audio_stream_idx = -1;
    static AVFrame *frame = NULL;
    static AVPacket pkt;
    static int video_frame_count = 0;
    static int audio_frame_count = 0;
    //END DE

    static int sws_flags = SWS_BICUBIC;

    /**************************************************************/
    /* audio output */

    static float t, tincr, tincr2;
    static int16_t *samples;
    static int audio_input_frame_size;

    /* Add an output stream. */
    static AVStream *add_stream(AVFormatContext *oc, AVCodec **codec,
                               enum AVCodecID codec_id)
    {
       AVCodecContext *c;
       AVStream *st;

       /* find the encoder */
       *codec = avcodec_find_encoder(codec_id);
       if (!(*codec)) {
           fprintf(stderr, "Could not find encoder for &#39;%s&#39;\n",
                   avcodec_get_name(codec_id));
           exit(1);
       }

       st = avformat_new_stream(oc, *codec);
       if (!st) {
           fprintf(stderr, "Could not allocate stream\n");
           exit(1);
       }
       st->id = oc->nb_streams-1;
       c = st->codec;

       switch ((*codec)->type) {
       case AVMEDIA_TYPE_AUDIO:
           st->id = 1;
           c->sample_fmt  = AV_SAMPLE_FMT_S16;
           c->bit_rate    = 64000;
           c->sample_rate = 44100;
           c->channels    = 2;
           break;

       case AVMEDIA_TYPE_VIDEO:
           c->codec_id = codec_id;

           c->bit_rate = 400000;
           /* Resolution must be a multiple of two. */
           c->width    = 352;
           c->height   = 288;
           /* timebase: This is the fundamental unit of time (in seconds) in terms
            * of which frame timestamps are represented. For fixed-fps content,
            * timebase should be 1/framerate and timestamp increments should be
            * identical to 1. */
           c->time_base.den = STREAM_FRAME_RATE;
           c->time_base.num = 1;
           c->gop_size      = 12; /* emit one intra frame every twelve frames at most */
           c->pix_fmt       = STREAM_PIX_FMT;
           if (c->codec_id == AV_CODEC_ID_MPEG2VIDEO) {
               /* just for testing, we also add B frames */
               c->max_b_frames = 2;
           }
           if (c->codec_id == AV_CODEC_ID_MPEG1VIDEO) {
               /* Needed to avoid using macroblocks in which some coeffs overflow.
                * This does not happen with normal video, it just happens here as
                * the motion of the chroma plane does not match the luma plane. */
               c->mb_decision = 2;
           }
       break;

       default:
           break;
       }

       /* Some formats want stream headers to be separate. */
       if (oc->oformat->flags &amp; AVFMT_GLOBALHEADER)
           c->flags |= CODEC_FLAG_GLOBAL_HEADER;

       return st;
    }

    /**************************************************************/
    /* audio output */

    static float t, tincr, tincr2;
    static int16_t *samples;
    static int audio_input_frame_size;

    static void open_audio(AVFormatContext *oc, AVCodec *codec, AVStream *st)
    {
       AVCodecContext *c;
       int ret;

       c = st->codec;

       /* open it */
       ret = avcodec_open2(c, codec, NULL);
       if (ret &lt; 0) {
           fprintf(stderr, "Could not open audio codec: %s\n", av_err2str(ret));
           exit(1);
       }

       /* init signal generator */
       t     = 0;
       tincr = 2 * M_PI * 110.0 / c->sample_rate;
       /* increment frequency by 110 Hz per second */
       tincr2 = 2 * M_PI * 110.0 / c->sample_rate / c->sample_rate;

       if (c->codec->capabilities &amp; CODEC_CAP_VARIABLE_FRAME_SIZE)
           audio_input_frame_size = 10000;
       else
           audio_input_frame_size = c->frame_size;
       samples = av_malloc(audio_input_frame_size *
                           av_get_bytes_per_sample(c->sample_fmt) *
                           c->channels);
       if (!samples) {
           fprintf(stderr, "Could not allocate audio samples buffer\n");
           exit(1);
       }
    }

    /* Prepare a 16 bit dummy audio frame of &#39;frame_size&#39; samples and
    * &#39;nb_channels&#39; channels. */
    static void get_audio_frame(int16_t *samples, int frame_size, int nb_channels)
    {
       int j, i, v;
       int16_t *q;

       q = samples;
       for (j = 0; j &lt; frame_size; j++) {
           v = (int)(sin(t) * 10000);
           for (i = 0; i &lt; nb_channels; i++)
               *q++ = v;
           t     += tincr;
           tincr += tincr2;
       }
    }

    static void write_audio_frame(AVFormatContext *oc, AVStream *st)
    {
       AVCodecContext *c;
       AVPacket pkt = { 0 }; // data and size must be 0;
       AVFrame *frame = avcodec_alloc_frame();
       int got_packet, ret;

       av_init_packet(&amp;pkt);
       c = st->codec;

       get_audio_frame(samples, audio_input_frame_size, c->channels);
       frame->nb_samples = audio_input_frame_size;
       avcodec_fill_audio_frame(frame, c->channels, c->sample_fmt,
                                (uint8_t *)samples,
                                audio_input_frame_size *
                                av_get_bytes_per_sample(c->sample_fmt) *
                                c->channels, 1);

       ret = avcodec_encode_audio2(c, &amp;pkt, frame, &amp;got_packet);
       if (ret &lt; 0) {
           fprintf(stderr, "Error encoding audio frame: %s\n", av_err2str(ret));
           exit(1);
       }

       if (!got_packet)
           return;

       pkt.stream_index = st->index;

       /* Write the compressed frame to the media file. */
       ret = av_interleaved_write_frame(oc, &amp;pkt);
       if (ret != 0) {
           fprintf(stderr, "Error while writing audio frame: %s\n",
                   av_err2str(ret));
           exit(1);
       }
       avcodec_free_frame(&amp;frame);
    }

    static void close_audio(AVFormatContext *oc, AVStream *st)
    {
       avcodec_close(st->codec);

       av_free(samples);
    }

    /**************************************************************/
    /* video output */

    static AVFrame *frame;
    static AVPicture src_picture, dst_picture;
    static int frame_count;

    static void open_video(AVFormatContext *oc, AVCodec *codec, AVStream *st)
    {
       int ret;
       AVCodecContext *c = st->codec;

       /* open the codec */
       ret = avcodec_open2(c, codec, NULL);
       if (ret &lt; 0) {
           fprintf(stderr, "Could not open video codec: %s\n", av_err2str(ret));
           exit(1);
       }

       /* allocate and init a re-usable frame */
       frame = avcodec_alloc_frame();
       if (!frame) {
           fprintf(stderr, "Could not allocate video frame\n");
           exit(1);
       }

       /* Allocate the encoded raw picture. */
       ret = avpicture_alloc(&amp;dst_picture, c->pix_fmt, c->width, c->height);
       if (ret &lt; 0) {
           fprintf(stderr, "Could not allocate picture: %s\n", av_err2str(ret));
           exit(1);
       }

       /* If the output format is not YUV420P, then a temporary YUV420P
        * picture is needed too. It is then converted to the required
        * output format. */
       if (c->pix_fmt != AV_PIX_FMT_YUV420P) {
           ret = avpicture_alloc(&amp;src_picture, AV_PIX_FMT_YUV420P, c->width, c->height);
           if (ret &lt; 0) {
               fprintf(stderr, "Could not allocate temporary picture: %s\n",
                       av_err2str(ret));
               exit(1);
           }
       }

       /* copy data and linesize picture pointers to frame */
       *((AVPicture *)frame) = dst_picture;
    }

    /* Prepare a dummy image. */
    static void fill_yuv_image(AVPicture *pict, int frame_index,
                              int width, int height)
    {
       int x, y, i;

       i = frame_index;

       /* Y */
       for (y = 0; y &lt; height; y++)
           for (x = 0; x &lt; width; x++)
               pict->data[0][y * pict->linesize[0] + x] = x + y + i * 3;

       /* Cb and Cr */
       for (y = 0; y &lt; height / 2; y++) {
           for (x = 0; x &lt; width / 2; x++) {
               pict->data[1][y * pict->linesize[1] + x] = 128 + y + i * 2;
               pict->data[2][y * pict->linesize[2] + x] = 64 + x + i * 5;
           }
       }
    }

    static void write_video_frame(AVFormatContext *oc, AVStream *st)
    {
       int ret;
       static struct SwsContext *sws_ctx;
       AVCodecContext *c = st->codec;

       if (frame_count >= STREAM_NB_FRAMES) {
           /* No more frames to compress. The codec has a latency of a few
            * frames if using B-frames, so we get the last frames by
            * passing the same picture again. */
       } else {
           if (c->pix_fmt != AV_PIX_FMT_YUV420P) {
               /* as we only generate a YUV420P picture, we must convert it
                * to the codec pixel format if needed */
               if (!sws_ctx) {
                   sws_ctx = sws_getContext(c->width, c->height, AV_PIX_FMT_YUV420P,
                                            c->width, c->height, c->pix_fmt,
                                            sws_flags, NULL, NULL, NULL);
                   if (!sws_ctx) {
                       fprintf(stderr,
                               "Could not initialize the conversion context\n");
                       exit(1);
                   }
               }
               fill_yuv_image(&amp;src_picture, frame_count, c->width, c->height);
               sws_scale(sws_ctx,
                         (const uint8_t * const *)src_picture.data, src_picture.linesize,
                         0, c->height, dst_picture.data, dst_picture.linesize);
           } else {
               fill_yuv_image(&amp;dst_picture, frame_count, c->width, c->height);
           }
       }

       if (oc->oformat->flags &amp; AVFMT_RAWPICTURE) {
           /* Raw video case - directly store the picture in the packet */
           AVPacket pkt;
           av_init_packet(&amp;pkt);

           pkt.flags        |= AV_PKT_FLAG_KEY;
           pkt.stream_index  = st->index;
           pkt.data          = dst_picture.data[0];
           pkt.size          = sizeof(AVPicture);

           ret = av_interleaved_write_frame(oc, &amp;pkt);
       } else {
           AVPacket pkt = { 0 };
           int got_packet;
           av_init_packet(&amp;pkt);

           /* encode the image */
           ret = avcodec_encode_video2(c, &amp;pkt, frame, &amp;got_packet);
           if (ret &lt; 0) {
               fprintf(stderr, "Error encoding video frame: %s\n", av_err2str(ret));
               exit(1);
           }
           /* If size is zero, it means the image was buffered. */

           if (!ret &amp;&amp; got_packet &amp;&amp; pkt.size) {
               pkt.stream_index = st->index;

               /* Write the compressed frame to the media file. */
               ret = av_interleaved_write_frame(oc, &amp;pkt);
           } else {
               ret = 0;
           }
       }
       if (ret != 0) {
           fprintf(stderr, "Error while writing video frame: %s\n", av_err2str(ret));
           exit(1);
       }
       frame_count++;
    }

    static void close_video(AVFormatContext *oc, AVStream *st)
    {
       avcodec_close(st->codec);
       av_free(src_picture.data[0]);
       av_free(dst_picture.data[0]);
       av_free(frame);
    }

    static int open_codec_context(int *stream_idx,
                                 AVFormatContext *fmt_ctx, enum AVMediaType type)
    {
       int ret;
       AVStream *st;
       AVCodecContext *dec_ctx = NULL;
       AVCodec *dec = NULL;

       ret = av_find_best_stream(fmt_ctx, type, -1, -1, NULL, 0);
       if (ret &lt; 0) {
           fprintf(stderr, "Could not find %s stream in input file &#39;%s&#39;\n",
                   av_get_media_type_string(type), src_filename);
           return ret;
       } else {
           *stream_idx = ret;
           st = fmt_ctx->streams[*stream_idx];

           /* find decoder for the stream */
           dec_ctx = st->codec;
           dec = avcodec_find_decoder(dec_ctx->codec_id);
           if (!dec) {
               fprintf(stderr, "Failed to find %s codec\n",
                       av_get_media_type_string(type));
               return ret;
           }

           if ((ret = avcodec_open2(dec_ctx, dec, NULL)) &lt; 0) {
               fprintf(stderr, "Failed to open %s codec\n",
                       av_get_media_type_string(type));
               return ret;
           }
       }

       return 0;
    }

    /**************************************************************/
    /* media file output */

    int main(int argc, char **argv)
    {
       const char *filename;
       AVOutputFormat *fmt;
       AVFormatContext *oc;
       AVStream *audio_st, *video_st;
       AVCodec *audio_codec, *video_codec;
       double audio_pts, video_pts;
       int ret = 0, got_frame;;

       /* Initialize libavcodec, and register all codecs and formats. */
       av_register_all();

       if (argc != 3) {
           printf("usage: %s input_file output_file\n"
                  "\n", argv[0]);
           return 1;
       }

       src_filename = argv[1];
       filename = argv[2];

       /* allocate the output media context */
       avformat_alloc_output_context2(&amp;oc, NULL, NULL, filename);
       if (!oc) {
           printf("Could not deduce output format from file extension: using MPEG.\n");
           avformat_alloc_output_context2(&amp;oc, NULL, "mpeg", filename);
       }
       if (!oc) {
           return 1;
       }
       fmt = oc->oformat;

       /* Add the audio and video streams using the default format codecs
        * and initialize the codecs. */
       video_stream = NULL;
       audio_stream = NULL;

       //FROM DE
       /* open input file, and allocate format context */
       if (avformat_open_input(&amp;fmt_ctx, src_filename, NULL, NULL) &lt; 0) {
           fprintf(stderr, "Could not open source file %s\n", src_filename);
           exit(1);
       }

       /* retrieve stream information */
       if (avformat_find_stream_info(fmt_ctx, NULL) &lt; 0) {
           fprintf(stderr, "Could not find stream information\n");
           exit(1);
       }
       if (open_codec_context(&amp;video_stream_idx, fmt_ctx, AVMEDIA_TYPE_VIDEO) >= 0) {
           video_stream = fmt_ctx->streams[video_stream_idx];
           video_dec_ctx = video_stream->codec;

           /* allocate image where the decoded image will be put */
           ret = av_image_alloc(video_dst_data, video_dst_linesize,
                                video_dec_ctx->width, video_dec_ctx->height,
                                video_dec_ctx->pix_fmt, 1);
           if (ret &lt; 0) {
               fprintf(stderr, "Could not allocate raw video buffer\n");
               goto end;
           }
           video_dst_bufsize = ret;
       }

       if (open_codec_context(&amp;audio_stream_idx, fmt_ctx, AVMEDIA_TYPE_AUDIO) >= 0) {
           int nb_planes;

           audio_stream = fmt_ctx->streams[audio_stream_idx];
           audio_dec_ctx = audio_stream->codec;

           nb_planes = av_sample_fmt_is_planar(audio_dec_ctx->sample_fmt) ?
               audio_dec_ctx->channels : 1;
           audio_dst_data = av_mallocz(sizeof(uint8_t *) * nb_planes);
           if (!audio_dst_data) {
               fprintf(stderr, "Could not allocate audio data buffers\n");
               ret = AVERROR(ENOMEM);
               goto end;
           }
       }
       //END DE

       /* Now that all the parameters are set, we can open the audio and
        * video codecs and allocate the necessary encode buffers. */
       if (video_stream)
           open_video(oc, video_codec, video_stream);
       if (audio_stream)
           open_audio(oc, audio_codec, audio_stream);

       av_dump_format(oc, 0, filename, 1);

       /* open the output file, if needed */
       if (!(fmt->flags &amp; AVFMT_NOFILE)) {
           ret = avio_open(&amp;oc->pb, filename, AVIO_FLAG_WRITE);
           if (ret &lt; 0) {
               fprintf(stderr, "Could not open &#39;%s&#39;: %s\n", filename,
                       av_err2str(ret));
               return 1;
           }
       }

       /* Write the stream header, if any. */
       ret = avformat_write_header(oc, NULL);
       if (ret &lt; 0) {
           fprintf(stderr, "Error occurred when opening output file: %s\n",
                   av_err2str(ret));
           return 1;
       }

       if (frame)
           frame->pts = 0;
       for (;;) {
           /* Compute current audio and video time. */
           if (audio_stream)
               audio_pts = (double)audio_stream->pts.val * audio_stream->time_base.num / audio_stream->time_base.den;
           else
               audio_pts = 0.0;

           if (video_stream)
               video_pts = (double)video_stream->pts.val * video_stream->time_base.num /
                           video_stream->time_base.den;
           else
               video_pts = 0.0;

           if ((!audio_stream || audio_pts >= STREAM_DURATION) &amp;&amp;
               (!video_stream || video_pts >= STREAM_DURATION))
               break;

           /* write interleaved audio and video frames */
           if (!video_stream || (video_stream &amp;&amp; audio_st &amp;&amp; audio_pts &lt; video_pts)) {
               write_audio_frame(oc, audio_stream);
           } else {
               write_video_frame(oc, video_stream);
               frame->pts += av_rescale_q(1, video_stream->codec->time_base, video_stream->time_base);
           }
       }

       /* Write the trailer, if any. The trailer must be written before you
        * close the CodecContexts open when you wrote the header; otherwise
        * av_write_trailer() may try to use memory that was freed on
        * av_codec_close(). */
       av_write_trailer(oc);

       /* Close each codec. */
       if (video_st)
           close_video(oc, video_st);
       if (audio_st)
           close_audio(oc, audio_st);

       if (!(fmt->flags &amp; AVFMT_NOFILE))
           /* Close the output file. */
           avio_close(oc->pb);

       /* free the stream */
       avformat_free_context(oc);

    end:
       if (video_dec_ctx)
           avcodec_close(video_dec_ctx);
       if (audio_dec_ctx)
           avcodec_close(audio_dec_ctx);
       avformat_close_input(&amp;fmt_ctx);
       if (video_dst_file)
           fclose(video_dst_file);
       if (audio_dst_file)
           fclose(audio_dst_file);
       av_free(frame);
       av_free(video_dst_data[0]);
       av_free(audio_dst_data);

       return 0;
    }
  • Top 4 CRO Tools to Boost Your Conversion Rates in 2024

    31 octobre 2023, par Erin

    Are you tired of watching potential customers leave your website without converting ? You’ve spent countless hours creating an engaging website, but those high bounce rates keep haunting you.

    The good news ? The solution lies in the transformative power of Conversion Rate Optimisation (CRO) tools. In this guide, we’ll dive deep into the world of CRO tools. We will equip you with strategies to turn those bounces into conversions.

    Why are conversion rate optimisation tools so crucial ?

    CRO tools can be assets in digital marketing, playing a pivotal role in enhancing online businesses’ performance. CRO tools empower businesses to improve website conversion rates by analysing user behaviour. You can then leverage this user data to optimise web elements.

    Improving website conversion rates is paramount because it increases revenue and customer satisfaction. A study by VentureBeat revealed an average return on investment (ROI) of 223% thanks to CRO tools.

    173 marketers out of the surveyed group reported returns exceeding 1,000%. Both of these data points highlight the impact CRO tools can have.

    Toolbox with a "CRO" label full of various tools

    Coupled with CRO tools, certain testing tools and web analytics tools play a crucial role. They offer insight into user behaviour patterns, enabling businesses to choose effective strategies. By understanding what resonates with users, these tools help inform data-driven decisions. This allows businesses to refine online strategies and enhance the customer experience.

    CRO tools enhance user experiences and ensure business sustainability. Integrating these tools is crucial for staying ahead. CRO and web analytics work together to optimise digital presence. 

    Real-world examples of CRO tools in action

    In this section, we’ll explore real case studies showcasing CRO tools in action. See how businesses enhance conversion rates, user experiences, and online performance. These studies reveal the practical impact of data-driven decisions and user-focused strategies.

    A computer with A and B on both sides and a magnifying glass hovering over the keyboard

    Case study : How Matomo’s Form Analytics helped Concrete CMS 3x leads

    Concrete CMS, is a content management system provider that helps users build and manage websites. They used Matomo’s Form Analytics to uncover that users were getting stuck at the address input stage of the onboarding process. Using these insights to make adjustments to their onboarding form, Concrete CMS was able to achieve 3 times the amount of leads in just a few days.

    Read the full Concrete CMS case study.

    Best analytics tools for enhancing conversion rate optimisation in 2023

    Jump to the comparison table to see an overview of each tool.

    1. Matomo

    Matomo main dashboard

    Matomo stands out as an all-encompassing tool that seamlessly combines traditional web analytics features (like pageviews and bounce rates) with advanced behavioural analytics capabilities, providing a full spectrum of insights for effective CRO.

    Key features

    • Heatmaps and Session Recordings :
      These features empower businesses to see their websites through the eyes of their visitors. By visually mapping user engagement and observing individual sessions, businesses can make informed decisions, enhance user experience and ultimately increase conversions. These tools are invaluable assets for businesses aiming to create user-friendly websites.
    • Form Analytics :
      Matomo’s Form Analytics offers comprehensive tracking of user interactions within forms. This includes covering input fields, dropdowns, buttons and submissions. Businesses can create custom conversion funnels and pinpoint form abandonment reasons. 
    • Users Flow :
      Matomo’s Users Flow feature tracks visitor paths, drop-offs and successful routes, helping businesses optimise their websites. This insight informs decisions, enhances user experience, and boosts conversion rates.
    • Surveys plugin :
      The Matomo Surveys plugin allows businesses to gather direct feedback from users. This feature enhances understanding by capturing user opinions, adding another layer to the analytical depth Matomo offers.
    • A/B testing :
      The platform allows you to conduct A/B tests to compare different versions of web pages. This helps determine which performs better in conversions. By conducting experiments and analysing the results within Matomo, businesses can iteratively refine their content and design elements.
    • Funnels :
      Matomo’s Funnels feature empower businesses to visualise, analyse and optimise their conversion paths. By identifying drop-off points, tailoring user experiences and conducting A/B tests within the funnel, businesses can make data-driven decisions that significantly boost conversions and enhance the overall user journey on their websites.

    Pros

    • Starting at $19 per month, Matomo is an affordable CRO solution.
    • Matomo guarantees accurate data, eliminating the need to fill gaps with artificial intelligence (AI) or machine learning. 
    • Matomo’s open-source framework ensures enhanced security, privacy, customisation, community support and long-term reliability. 

    Cons

    • The On-Premise (self-hosted) version is free, with additional charges for advanced features.
    • Managing Matomo On-Premise requires servers and technical know-how.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    2. Google Analytics

    Traffic tracking chart and life cycle

    Google Analytics provides businesses and website owners valuable insights into their online audience. It tracks website traffic, user interactions and analyses conversion data to enhance the user experience.

    While Google Analytics may not provide the extensive CRO-specific features found in other tools on this list, it can still serve as a valuable resource for basic analysis and optimisation of conversion rates.

    Key features

    • Comprehensive Data Tracking :
      Google Analytics meticulously tracks website traffic, user behaviour and conversion rates. These insights form the foundation for CRO efforts. Businesses can identify patterns, user bottlenecks and high-performing areas.
    • Real-Time Reporting :
      Access to real-time data is invaluable for CRO efforts. Monitor current website activity, user interactions, and campaign performance as they unfold. This immediate feedback empowers businesses to make instant adjustments, optimising web elements and content for maximum conversions.
    • User flow analysis
      Visualise and understand how visitors navigate through your website. It provides insights into the paths users take as they move from one page to another, helping you identify the most common routes and potential drop-off points in the user journey.
    • Event-based tracking :
      GA4’s event-based reporting offers greater flexibility and accuracy in data collection. By tracking various interactions, including video views and checkout processes, businesses can gather more precise insights into user behaviour. 
    • Funnels :
      GA4 offers multistep funnels, path analysis, custom metrics that integrate with audience segments. These user behaviour insights help businesses to tailor their websites, marketing campaigns and user experiences.

    Pros

    • Flexible audience management across products, regions or brands allow businesses to analyse data from multiple source properties. 
    • Google Analytics integrates with other Google services and third-party platforms. This enables a comprehensive view of online activities.
    • Free to use, although enterprises may need to switch to the paid version to accommodate higher data volumes.

    Cons

    • Google Analytics raises privacy concerns, primarily due to its tracking capabilities and the extensive data it collects.
    • Limitations imposed by thresholding can significantly hinder efforts to enhance user experience and boost conversions effectively.
    • Property and sampling limits exist. This creates problems when you’re dealing with extensive datasets or high-traffic websites. 
    • The interface is difficult to navigate and configure, resulting in a steep learning curve.

    3. Contentsquare

    Pie chart with landing page journey data

    Contentsquare is a web analytics and CRO platform. It stands out for its in-depth behavioural analytics. Contentsquare offers detailed data on how users interact with websites and mobile applications.

    Key features

    • Heatmaps and Session Replays :
      Users can visualise website interactions through heatmaps, highlighting popular areas and drop-offs. Session replay features enable the playback of user sessions. These provide in-depth insights into individual user experiences.
    • Conversion Funnel Analysis :
      Contentsquare tracks users through conversion funnels, identifying where users drop off during conversion. This helps in optimising the user journey and increasing conversion rates.
    • Segmentation and Personalisation :
      Businesses can segment their audience based on various criteria. Segments help create personalised experiences, tailoring content and offers to specific user groups.
    • Integration Capabilities :
      Contentsquare integrates with various third-party tools and platforms, enhancing its functionality and allowing businesses to leverage their existing tech stack.

    Pros

    • Comprehensive support and resources.
    • User-friendly interface.
    • Personalisation capabilities.

    Cons

    • High price point.
    • Steep learning curve.

    4. Hotjar

    Pricing page heatmap data

    Hotjar is a robust tool designed to unravel user behaviour intricacies. With its array of features including visual heatmaps, session recordings and surveys, it goes beyond just identifying popular areas and drop-offs.

    Hotjar provides direct feedback and offers an intuitive interface, enabling seamless experience optimisation.

    Key features

    • Heatmaps :
      Hotjar provides visual heatmaps that display user interactions on your website. Heatmaps show where users click, scroll, and how far they read. This feature helps identify popular areas and points of abandonment.
    • Session Recordings :
      Hotjar allows you to record user sessions and watch real interactions on your site. This insight is invaluable for understanding user behaviour and identifying usability issues.
    • Surveys and Feedback :
      Hotjar offers on-site surveys and feedback forms that can get triggered based on user behaviour. These tools help collect qualitative data from real users, providing valuable insights.
    • Recruitment Tool :
      Hotjar’s recruitment tool lets you recruit participants from your website for user testing. This feature streamlines the process of finding participants for usability studies.
    • Funnel and Form Analysis :
      Hotjar enables the tracking of user journeys through funnels. It provides insights into where users drop off during the conversion process. It also offers form analysis to optimise form completion rates.
    • User Polls :
      You can create customisable polls to engage with visitors. Gather specific feedback on your website, products, or services.

    Pros

    • Starting at $32 per month, Hotjar is a cost-effective solution for most businesses. 
    • Hotjar provides a user-friendly interface that is easy for the majority of users to pick up quickly.

    Cons

    • Does not provide traditional web analytics and requires combining with another tool, potentially creating a less streamlined and cohesive user experience, which can complicate conversion rate optimization efforts.
    • Hotjar’s limited integrations can hinder its ability to seamlessly work with other essential tools and platforms, potentially further complicating CRO.

    Comparison Table

    Please note : We aim to keep this table accurate and up to date. However, if you see any inaccuracies or outdated information, please email us at marketing@matomo.org

    To make comparing these tools even easier, we’ve put together a table for you to compare features and price points :

    A comparison chart comparing the CRO/web analytics features and price points of Matomo, Google Analytics, ContentSquare, and HotJar

    Conclusion

    CRO tools and web analytics are essential for online success. Businesses thrive by investing wisely, understanding user behaviour and using targeted strategies. The key : generate traffic and convert it into leads and customers. The right tools and strategies lead to remarkable conversions and online success. Each click, each interaction, becomes an opportunity to create an engaging user journey. This careful orchestration of data and insight separates thriving businesses from the rest.

    Are you ready to embark on a journey toward improved conversions and enhanced user experiences ? Matomo offers analytics solutions meticulously designed to complement your CRO strategy. Take the next step in your CRO journey. Start your 21-day free trial today—no credit card required.

  • FFmpeg : Parallel encoding with custom thread pool

    13 novembre 2017, par ZeroDefect

    One of the things I’m trying to achieve is parallel encoding via FFmpeg’s c API. This looks to work out of the box quite nicely ; however, I’ve changed the goal posts slightly :

    In an existing application, I already have a thread pool at hand. Instead of using another thread pool via FFmpeg, I would like reuse the existing thread pool in my application. Having studied the latest FFmpeg trunk docs, it very much looks possible.

    Using some FFmpeg sample code, I’ve created a sample application to demonstrate what I’m trying to achieve (see below). The sample app generates a video-only mpeg2 ts using the mp2v codec.

    The problem I’m experiencing is that the custom ’thread_execute’ or ’thread_execute2’ are never invoked. This is despite the fact that the codec appears to indicate that threading is supported. Please be aware that I have not yet plumbed in the thread pool just yet. My first goal is for it to call the custom function pointer.

    I’ve tried to get assistance on the FFmpeg mailing lists but to no avail.

    #include <iostream>
    #include <thread>
    #include
    #include
    #include
    #include <cstring>
    #include <future>

    extern "C"
    {
    #include <libavutil></libavutil>avassert.h>
    #include <libavutil></libavutil>channel_layout.h>
    #include <libavutil></libavutil>opt.h>
    #include <libavutil></libavutil>timestamp.h>
    #include <libavformat></libavformat>avformat.h>
    //#include <libswscale></libswscale>swscale.h>
    #include <libswresample></libswresample>swresample.h>
    }

    #define STREAM_DURATION   1000.0
    #define STREAM_FRAME_RATE 25 /* 25 images/s */
    #define STREAM_PIX_FMT    AV_PIX_FMT_YUV420P /* default pix_fmt */

    #define SCALE_FLAGS SWS_BICUBIC

    // a wrapper around a single output AVStream
    typedef struct OutputStream {
       AVStream *st;
       AVCodecContext *enc;

       /* pts of the next frame that will be generated */
       int64_t next_pts;
       int samples_count;

       AVFrame *frame;
       AVFrame *tmp_frame;

       float t, tincr, tincr2;

       struct SwsContext *sws_ctx;
       struct SwrContext *swr_ctx;
    } OutputStream;

    /////////////////////////////////////////////////////////////////////////////
    //  The ffmpeg variation raises compiler warnings.
    char *cb_av_ts2str(char *buf, int64_t ts)
    {
       std::memset(buf,0,AV_TS_MAX_STRING_SIZE);
       return av_ts_make_string(buf,ts);
    }

    /////////////////////////////////////////////////////////////////////////////
    //  The ffmpeg variation raises compiler warnings.
    char *cb_av_ts2timestr(char *buf, int64_t ts, AVRational *tb)
    {
       std::memset(buf,0,sizeof(AV_TS_MAX_STRING_SIZE));
       return av_ts_make_time_string(buf,ts,tb);
    }

    /////////////////////////////////////////////////////////////////////////////
    //  The ffmpeg variation raises compiler warnings.
    char *cb_av_err2str(char *errbuf, size_t errbuf_size, int errnum)
    {
       std::memset(errbuf,0,errbuf_size);
       return av_make_error_string(errbuf,errbuf_size,errnum);
    }

    int thread_execute(AVCodecContext* s, int (*func)(AVCodecContext *c2, void *arg2), void* arg, int* ret, int count, int size)
    {
       // Do it all serially for now
       std::cout &lt;&lt; "thread_execute" &lt;&lt; std::endl;

       for (int k = 0; k &lt; count; ++k)
       {
           ret[k] = func(s, arg);
       }

       return 0;
    }

    int thread_execute2(AVCodecContext* s, int (*func)(AVCodecContext* c2, void* arg2, int, int), void* arg, int* ret, int count)
    {
       // Do it all serially for now
       std::cout &lt;&lt; "thread_execute2" &lt;&lt; std::endl;

       for (int k = 0; k &lt; count; ++k)
       {
           ret[k] = func(s, arg, k, count);
       }

       return 0;
    }


    static void log_packet(const AVFormatContext *fmt_ctx, const AVPacket *pkt)
    {
       char s[AV_TS_MAX_STRING_SIZE];

       AVRational *time_base = &amp;fmt_ctx->streams[pkt->stream_index]->time_base;

       printf("pts:%s pts_time:%s dts:%s dts_time:%s duration:%s duration_time:%s stream_index:%d\n",
              cb_av_ts2str(s,pkt->pts), cb_av_ts2timestr(s,pkt->pts, time_base),
              cb_av_ts2str(s,pkt->dts), cb_av_ts2timestr(s,pkt->dts, time_base),
              cb_av_ts2str(s,pkt->duration), cb_av_ts2timestr(s,pkt->duration, time_base),
              pkt->stream_index);
    }

    static int write_frame(AVFormatContext *fmt_ctx, const AVRational *time_base, AVStream *st, AVPacket *pkt)
    {
       /* rescale output packet timestamp values from codec to stream timebase */
       av_packet_rescale_ts(pkt, *time_base, st->time_base);
       pkt->stream_index = st->index;

       /* Write the compressed frame to the media file. */
       log_packet(fmt_ctx, pkt);
       return av_interleaved_write_frame(fmt_ctx, pkt);
    }

    /* Add an output stream. */
    static void add_stream(OutputStream *ost, AVFormatContext *oc,
                          AVCodec **codec,
                          enum AVCodecID codec_id)
    {
       AVCodecContext *c;
       int i;

       /* find the encoder */
       *codec = avcodec_find_encoder(codec_id);
       if (!(*codec)) {
           fprintf(stderr, "Could not find encoder for '%s'\n",
                   avcodec_get_name(codec_id));
           exit(1);
       }

       ost->st = avformat_new_stream(oc, NULL);
       if (!ost->st) {
           fprintf(stderr, "Could not allocate stream\n");
           exit(1);
       }
       ost->st->id = oc->nb_streams-1;
       c = avcodec_alloc_context3(*codec);
       if (!c) {
           fprintf(stderr, "Could not alloc an encoding context\n");
           exit(1);
       }
       ost->enc = c;

       switch ((*codec)->type)
       {
           case AVMEDIA_TYPE_AUDIO:
               c->sample_fmt  = (*codec)->sample_fmts ?
                                (*codec)->sample_fmts[0] : AV_SAMPLE_FMT_FLTP;
               c->bit_rate    = 64000;
               c->sample_rate = 44100;
               if ((*codec)->supported_samplerates) {
                   c->sample_rate = (*codec)->supported_samplerates[0];
                   for (i = 0; (*codec)->supported_samplerates[i]; i++) {
                       if ((*codec)->supported_samplerates[i] == 44100)
                           c->sample_rate = 44100;
                   }
               }
               c->channels        = av_get_channel_layout_nb_channels(c->channel_layout);
               c->channel_layout = AV_CH_LAYOUT_STEREO;
               if ((*codec)->channel_layouts) {
                   c->channel_layout = (*codec)->channel_layouts[0];
                   for (i = 0; (*codec)->channel_layouts[i]; i++) {
                       if ((*codec)->channel_layouts[i] == AV_CH_LAYOUT_STEREO)
                           c->channel_layout = AV_CH_LAYOUT_STEREO;
                   }
               }
               c->channels        = av_get_channel_layout_nb_channels(c->channel_layout);
               ost->st->time_base = (AVRational){ 1, c->sample_rate };
               break;

           case AVMEDIA_TYPE_VIDEO:
               c->codec_id = codec_id;

               c->bit_rate = 400000;
               /* Resolution must be a multiple of two. */
               c->width    = 352;
               c->height   = 288;
               /* timebase: This is the fundamental unit of time (in seconds) in terms
                * of which frame timestamps are represented. For fixed-fps content,
                * timebase should be 1/framerate and timestamp increments should be
                * identical to 1. */
               ost->st->time_base = (AVRational){ 1, STREAM_FRAME_RATE };
               c->time_base       = ost->st->time_base;

               c->gop_size      = 12; /* emit one intra frame every twelve frames at most */
               c->pix_fmt       = STREAM_PIX_FMT;
               if (c->codec_id == AV_CODEC_ID_MPEG2VIDEO) {
                   /* just for testing, we also add B-frames */
                   c->max_b_frames = 2;
               }
               if (c->codec_id == AV_CODEC_ID_MPEG1VIDEO) {
                   /* Needed to avoid using macroblocks in which some coeffs overflow.
                    * This does not happen with normal video, it just happens here as
                    * the motion of the chroma plane does not match the luma plane. */
                   c->mb_decision = 2;
               }
               break;

           default:
               break;
       }

       if (c->codec->capabilities &amp; AV_CODEC_CAP_FRAME_THREADS ||
           c->codec->capabilities &amp; AV_CODEC_CAP_SLICE_THREADS)
       {
           if (c->codec->capabilities &amp; AV_CODEC_CAP_FRAME_THREADS)
           {
               c->thread_type = FF_THREAD_FRAME;
           }
           if (c->codec->capabilities &amp; AV_CODEC_CAP_SLICE_THREADS)
           {
               c->thread_type = FF_THREAD_SLICE;
           }

           c->execute = &amp;thread_execute;
           c->execute2 = &amp;thread_execute2;
           c->thread_count = 4;

           // NOTE: Testing opaque.
           c->opaque = (void*)0xff;
       }

       /* Some formats want stream headers to be separate. */
       if (oc->oformat->flags &amp; AVFMT_GLOBALHEADER)
           c->flags |= AV_CODEC_FLAG_GLOBAL_HEADER;
    }

    /**************************************************************/
    /* video output */

    static AVFrame *alloc_picture(enum AVPixelFormat pix_fmt, int width, int height)
    {
       AVFrame *picture;
       int ret;

       picture = av_frame_alloc();
       if (!picture)
           return NULL;

       picture->format = pix_fmt;
       picture->width  = width;
       picture->height = height;

       /* allocate the buffers for the frame data */
       ret = av_frame_get_buffer(picture, 32);
       if (ret &lt; 0) {
           fprintf(stderr, "Could not allocate frame data.\n");
           exit(1);
       }

       return picture;
    }

    static void open_video(AVFormatContext *oc, AVCodec *codec, OutputStream *ost, AVDictionary *opt_arg)
    {
       int ret;
       AVCodecContext *c = ost->enc;
       //AVDictionary *opt = NULL;

       //av_dict_copy(&amp;opt, opt_arg, 0);

       /* open the codec */
       ret = avcodec_open2(c, codec, NULL);
       //av_dict_free(&amp;opt);
       if (ret &lt; 0) {
           char s[AV_ERROR_MAX_STRING_SIZE];
           fprintf(stderr, "Could not open video codec: %s\n", cb_av_err2str(s,AV_ERROR_MAX_STRING_SIZE,ret));
           exit(1);
       }

       /* allocate and init a re-usable frame */
       ost->frame = alloc_picture(c->pix_fmt, c->width, c->height);
       if (!ost->frame) {
           fprintf(stderr, "Could not allocate video frame\n");
           exit(1);
       }

       /* If the output format is not YUV420P, then a temporary YUV420P
        * picture is needed too. It is then converted to the required
        * output format. */
       ost->tmp_frame = NULL;
       if (c->pix_fmt != AV_PIX_FMT_YUV420P) {
           ost->tmp_frame = alloc_picture(AV_PIX_FMT_YUV420P, c->width, c->height);
           if (!ost->tmp_frame) {
               fprintf(stderr, "Could not allocate temporary picture\n");
               exit(1);
           }
       }

       /* copy the stream parameters to the muxer */
       ret = avcodec_parameters_from_context(ost->st->codecpar, c);
       if (ret &lt; 0) {
           fprintf(stderr, "Could not copy the stream parameters\n");
           exit(1);
       }
    }

    /* Prepare a dummy image. */
    static void fill_yuv_image(AVFrame *pict, int frame_index,
                              int width, int height)
    {
       int x, y, i;

       i = frame_index;

       /* Y */
       for (y = 0; y &lt; height; y++)
           for (x = 0; x &lt; width; x++)
               pict->data[0][y * pict->linesize[0] + x] = x + y + i * 3;

       /* Cb and Cr */
       for (y = 0; y &lt; height / 2; y++) {
           for (x = 0; x &lt; width / 2; x++) {
               pict->data[1][y * pict->linesize[1] + x] = 128 + y + i * 2;
               pict->data[2][y * pict->linesize[2] + x] = 64 + x + i * 5;
           }
       }
    }

    static AVFrame *get_video_frame(OutputStream *ost)
    {
       AVCodecContext *c = ost->enc;

       /* check if we want to generate more frames */
       if (av_compare_ts(ost->next_pts, c->time_base,
                         STREAM_DURATION, (AVRational){ 1, 1 }) >= 0)
           return NULL;

       /* when we pass a frame to the encoder, it may keep a reference to it
        * internally; make sure we do not overwrite it here */
       if (av_frame_make_writable(ost->frame) &lt; 0)
           exit(1);

       if (c->pix_fmt != AV_PIX_FMT_YUV420P) {
           /* as we only generate a YUV420P picture, we must convert it
            * to the codec pixel format if needed */
           /*if (!ost->sws_ctx) {
               ost->sws_ctx = sws_getContext(c->width, c->height,
                                             AV_PIX_FMT_YUV420P,
                                             c->width, c->height,
                                             c->pix_fmt,
                                             SCALE_FLAGS, NULL, NULL, NULL);
               if (!ost->sws_ctx) {
                   fprintf(stderr,
                           "Could not initialize the conversion context\n");
                   exit(1);
               }
           }
           fill_yuv_image(ost->tmp_frame, ost->next_pts, c->width, c->height);
           sws_scale(ost->sws_ctx,
                     (const uint8_t * const *)ost->tmp_frame->data, ost->tmp_frame->linesize,
                     0, c->height, ost->frame->data, ost->frame->linesize);*/
       } else {
           fill_yuv_image(ost->frame, ost->next_pts, c->width, c->height);
       }

       ost->frame->pts = ost->next_pts++;

       return ost->frame;
    }

    /*
    * encode one video frame and send it to the muxer
    * return 1 when encoding is finished, 0 otherwise
    */
    static int write_video_frame(AVFormatContext *oc, OutputStream *ost)
    {
       int ret;
       AVCodecContext *c;
       AVFrame *frame;
       int got_packet = 0;
       AVPacket pkt = { 0 };

       c = ost->enc;

       frame = get_video_frame(ost);

       if (frame)
       {
           ret = avcodec_send_frame(ost->enc, frame);
           if (ret &lt; 0)
           {
               char s[AV_ERROR_MAX_STRING_SIZE];
               fprintf(stderr, "Error encoding video frame: %s\n", cb_av_err2str(s, AV_ERROR_MAX_STRING_SIZE, ret));
               exit(1);
           }
       }

       av_init_packet(&amp;pkt);

       ret = avcodec_receive_packet(ost->enc,&amp;pkt);
       if (ret &lt; 0)
       {
           if (ret == AVERROR(EAGAIN)) { ret = 0; }
           else
           {
               char s[AV_ERROR_MAX_STRING_SIZE];
               fprintf(stderr, "Error receiving packet: %s\n", cb_av_err2str(s,AV_ERROR_MAX_STRING_SIZE,ret));
               exit(1);
           }
       }
       else
       {
           got_packet = 1;
           ret = write_frame(oc, &amp;c->time_base, ost->st, &amp;pkt);
       }

       if (ret &lt; 0) {
           char s[AV_ERROR_MAX_STRING_SIZE];
           fprintf(stderr, "Error while writing video frame: %s\n", cb_av_err2str(s,AV_ERROR_MAX_STRING_SIZE,ret));
           exit(1);
       }

       return (frame || got_packet) ? 0 : 1;
    }

    static void close_stream(AVFormatContext *oc, OutputStream *ost)
    {
       avcodec_free_context(&amp;ost->enc);
       av_frame_free(&amp;ost->frame);
       av_frame_free(&amp;ost->tmp_frame);
       //sws_freeContext(ost->sws_ctx);
       //swr_free(&amp;ost->swr_ctx);
    }

    /**************************************************************/
    /* media file output */

    int main(int argc, char **argv)
    {
       OutputStream video_st = { 0 }, audio_st = { 0 };
       const char *filename;
       AVOutputFormat *fmt;
       AVFormatContext *oc;
       AVCodec /**audio_codec,*/ *video_codec;
       int ret;
       int have_video = 0, have_audio = 0;
       int encode_video = 0, encode_audio = 0;
       AVDictionary *opt = NULL;
       int i;

       /* Initialize libavcodec, and register all codecs and formats. */
       av_register_all();
       avformat_network_init();

       if (argc &lt; 2) {
           printf("usage: %s output_file\n"
                      "API example program to output a media file with libavformat.\n"
                      "This program generates a synthetic audio and video stream, encodes and\n"
                      "muxes them into a file named output_file.\n"
                      "The output format is automatically guessed according to the file extension.\n"
                      "Raw images can also be output by using '%%d' in the filename.\n"
                      "\n", argv[0]);
           return 1;
       }

       filename = argv[1];
       for (i = 2; i+1 &lt; argc; i+=2) {
           if (!strcmp(argv[i], "-flags") || !strcmp(argv[i], "-fflags"))
               av_dict_set(&amp;opt, argv[i]+1, argv[i+1], 0);
       }

       const char *pfilename = filename;

       /* allocate the output media context */
       avformat_alloc_output_context2(&amp;oc, NULL, "mpegts", pfilename);
       if (!oc) {
           printf("Could not deduce output format from file extension: using MPEG.\n");
           avformat_alloc_output_context2(&amp;oc, NULL, "mpeg", pfilename);
       }
       if (!oc)
           return 1;

       fmt = oc->oformat;

       /* Add the audio and video streams using the default format codecs
        * and initialize the codecs. */
       if (fmt->video_codec != AV_CODEC_ID_NONE) {
           add_stream(&amp;video_st, oc, &amp;video_codec, fmt->video_codec);
           have_video = 1;
           encode_video = 1;
       }
       /*if (fmt->audio_codec != AV_CODEC_ID_NONE) {
           add_stream(&amp;audio_st, oc, &amp;audio_codec, fmt->audio_codec);
           have_audio = 1;
           encode_audio = 1;
       }*/

       /* Now that all the parameters are set, we can open the audio and
        * video codecs and allocate the necessary encode buffers. */
       if (have_video)
           open_video(oc, video_codec, &amp;video_st, opt);

       //if (have_audio)
       //    open_audio(oc, audio_codec, &amp;audio_st, opt);

       av_dump_format(oc, 0, pfilename, 1);

       /* open the output file, if needed */
       if (!(fmt->flags &amp; AVFMT_NOFILE)) {
           ret = avio_open(&amp;oc->pb, pfilename, AVIO_FLAG_WRITE);
           if (ret &lt; 0) {
               char s[AV_ERROR_MAX_STRING_SIZE];
               fprintf(stderr, "Could not open '%s': %s\n", pfilename,
                       cb_av_err2str(s,AV_ERROR_MAX_STRING_SIZE,ret));
               return 1;
           }
       }

       /* Write the stream header, if any. */
       ret = avformat_write_header(oc, &amp;opt);
       if (ret &lt; 0) {
           char s[AV_ERROR_MAX_STRING_SIZE];
           fprintf(stderr, "Error occurred when opening output file: %s\n",
                   cb_av_err2str(s,AV_ERROR_MAX_STRING_SIZE,ret));
           return 1;
       }

       while (encode_video || encode_audio) {
           /* select the stream to encode */
           if (encode_video &amp;&amp;
               (!encode_audio || av_compare_ts(video_st.next_pts, video_st.enc->time_base,
                                               audio_st.next_pts, audio_st.enc->time_base) &lt;= 0)) {
               encode_video = !write_video_frame(oc, &amp;video_st);
           } else {
               //encode_audio = !write_audio_frame(oc, &amp;audio_st);
           }

           //std::this_thread::sleep_for(std::chrono::milliseconds(35));
       }

       /* Write the trailer, if any. The trailer must be written before you
        * close the CodecContexts open when you wrote the header; otherwise
        * av_write_trailer() may try to use memory that was freed on
        * av_codec_close(). */
       av_write_trailer(oc);

       /* Close each codec. */
       if (have_video)
           close_stream(oc, &amp;video_st);
       if (have_audio)
           close_stream(oc, &amp;audio_st);

       if (!(fmt->flags &amp; AVFMT_NOFILE))
           /* Close the output file. */
           avio_closep(&amp;oc->pb);

       /* free the stream */
       avformat_free_context(oc);

       return 0;
    }

                                                   //
    </future></cstring></thread></iostream>

    Environment :

    • Ubuntu Zesty (17.04)
    • FFmpeg version 3.2.4 (via package manager)
    • gcc 6.3 (C++)