
Recherche avancée
Médias (1)
-
Bug de détection d’ogg
22 mars 2013, par
Mis à jour : Avril 2013
Langue : français
Type : Video
Autres articles (97)
-
Submit bugs and patches
13 avril 2011Unfortunately a software is never perfect.
If you think you have found a bug, report it using our ticket system. Please to help us to fix it by providing the following information : the browser you are using, including the exact version as precise an explanation as possible of the problem if possible, the steps taken resulting in the problem a link to the site / page in question
If you think you have solved the bug, fill in a ticket and attach to it a corrective patch.
You may also (...) -
Les sons
15 mai 2013, par -
Récupération d’informations sur le site maître à l’installation d’une instance
26 novembre 2010, parUtilité
Sur le site principal, une instance de mutualisation est définie par plusieurs choses : Les données dans la table spip_mutus ; Son logo ; Son auteur principal (id_admin dans la table spip_mutus correspondant à un id_auteur de la table spip_auteurs)qui sera le seul à pouvoir créer définitivement l’instance de mutualisation ;
Il peut donc être tout à fait judicieux de vouloir récupérer certaines de ces informations afin de compléter l’installation d’une instance pour, par exemple : récupérer le (...)
Sur d’autres sites (7423)
-
avutil : add thread executor
29 août 2023, par Nuo Miavutil : add thread executor
The executor design pattern was introduced by java
<https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/Executor.html> ;
it also adapted by python
<https://docs.python.org/3/library/concurrent.futures.html> ;
Compared to handcrafted thread pool management, it greatly simplifies the thread code.Signed-off-by : Michael Niedermayer <michael@niedermayer.cc>
-
lavc/vp9 : fix reference frame dimensions check for SINGLE_REFERENCE mode
17 mars 2020, par Linjie Fulavc/vp9 : fix reference frame dimensions check for SINGLE_REFERENCE mode
With the description in frame size with refs semantics (SPEC 7.2.5),
it is a requirement of bitstream conformance that for at least one
reference frame has the valid dimensions.Modify the check to make sure the decoder works well in SINGLE_REFERENCE
mode that not all reference frames have valid dimensions.Check and error out if invalid reference frame is used in inter_recon.
One of the failure case is a 480x272 inter frame (SINGLE_REFERENCE mode)
with following reference pool :0. 960x544 LAST valid
1. 1920x1088 GOLDEN invalid, but not used in single reference mode
2. 1920x1088 ALTREF invalid, but not used in single reference mode
3 7 ... UnusedIdentical logic in libvpx :
<https://github.com/webmproject/libvpx/blob/master/vp9/decoder/vp9_decodeframe.c#L736> ;Signed-off-by : Linjie Fu <linjie.fu@intel.com>
Signed-off-by : Ronald S. Bultje <rsbultje@gmail.com> -
Basic Video Palette Conversion
How do you take a 24-bit RGB image and convert it to an 8-bit paletted image for the purpose of compression using a codec that requires 8-bit input images ? Seems simple enough and that’s what I’m tackling in this post.
Ask FFmpeg/Libav To Do It
Ideally, FFmpeg / Libav should be able to handle this automatically. Indeed, FFmpeg used to be able to, at least at the time I wrote this post about ZMBV and was unhappy with FFmpeg’s default results. Somewhere along the line, FFmpeg and Libav lost the ability to do this. I suspect it got removed during some swscale refactoring.Still, there’s no telling if the old system would have computed palettes correctly for QuickTime files.
Distance Approach
When I started writing my SMC video encoder, I needed to convert RGB (from PNG files) to PAL8 colorspace. The path of least resistance was to match the pixels in the input image to the default 256-color palette that QuickTime assumes (and is hardcoded into FFmpeg/Libav).How to perform the matching ? Find the palette entry that is closest to a given input pixel, where "closest" is the minimum distance as computed by the usual distance formula (square root of the sum of the squares of the diffs of all the components).
That means for each pixel in an image, check the pixel against 256 palette entries (early termination is possible if an acceptable threshold is met). As you might imagine, this can be a bit time-consuming. I wondered about a faster approach...
Lookup Table
I think this is the approach that FFmpeg used to use, but I went and derived it for myself after studying the default QuickTime palette table. There’s a pattern there— all of the RGB entries are comprised of combinations of 6 values — 0x00, 0x33, 0x66, 0x99, 0xCC, and 0xFF. If you mix and match these for red, green, and blue values, you come up with6 * 6 * 6 = 216
different colors. This happens to be identical to the web-safe color palette.The first (0th) entry in the table is (FF, FF, FF), followed by (FF, FF, CC), (FF, FF, 99), and on down to (FF, FF, 00) when the green component gets knocked down and step and the next color is (FF, CC, FF). The first 36 palette entries in the table all have a red component of 0xFF. Thus, if an input RGB pixel has a red color closest to 0xFF, it must map to one of those first 36 entries.
I created a table which maps indices 0..215 to values from 5..0. Each of the R, G, and B components of an input pixel are used to index into this table and derive 3 indices ri, gi, and bi. Finally, the index into the palette table is given by :
index = ri * 36 + gi * 6 + bi
For example, the pixel (0xFE, 0xFE, 0x01) would yield ri, gi, and bi values of 0, 0, and 5. Therefore :
index = 0 * 36 + 0 * 6 + 5
The palette index is 5, which maps to color (0xFF, 0xFF, 0x00).
Validation
So I was pretty pleased with myself for coming up with that. Now, ideally, swapping out one algorithm for another in my SMC encoder should yield identical results. That wasn’t the case, initially.One problem is that the regulation QuickTime palette actually has 40 more entries above and beyond the typical 216-entry color cube (rounding out the grand total of 256 colors). Thus, using the distance approach with the full default table provides for a little more accuracy.
However, there still seems to be a problem. Let’s check our old standby, the Big Buck Bunny logo image :
Distance approach using the full 256-color QuickTime default palette
Distance approach using the 216-color palette
Table lookup approach using the 216-color palette
I can’t quite account for that big red splotch there. That’s the most notable difference between images 1 and 2 and the only visible difference between images 2 and 3.
To prove to myself that the distance approach is equivalent to the table approach, I wrote a Python script to iterate through all possible RGB combinations and verify the equivalence. If you’re not up on your base 2 math, that’s 224 or 16,777,216 colors to run through. I used Python’s multiprocessing module to great effect and really maximized a Core i7 CPU with 8 hardware threads.
So I’m confident that the palette conversion techniques are sound. The red spot is probably attributable to a bug in my WIP SMC encoder.
Source Code
Update August 23, 2011 : Here’s the Python code I used for proving equivalence between the 2 approaches. In terms of leveraging multiple CPUs, it’s possibly the best program I have written to date.PYTHON :-
# !/usr/bin/python
-
-
from multiprocessing import Pool
-
-
palette = []
-
pal8_table = []
-
-
def process_r(r) :
-
counts = []
-
-
for i in xrange(216) :
-
counts.append(0)
-
-
print "r = %d" % (r)
-
for g in xrange(256) :
-
for b in xrange(256) :
-
min_dsqrd = 0xFFFFFFFF
-
best_index = 0
-
for i in xrange(len(palette)) :
-
dr = palette[i][0] - r
-
dg = palette[i][1] - g
-
db = palette[i][2] - b
-
dsqrd = dr * dr + dg * dg + db * db
-
if dsqrd <min_dsqrd :
-
min_dsqrd = dsqrd
-
best_index = i
-
counts[best_index] += 1
-
-
# check if the distance approach deviates from the table-based approach
-
i = best_index
-
r = palette[i][0]
-
g = palette[i][1]
-
b = palette[i][2]
-
ri = pal8_table[r]
-
gi = pal8_table[g]
-
bi = pal8_table[b]
-
table_index = ri * 36 + gi * 6 + bi ;
-
if table_index != best_index :
-
print "(0x%02X 0x%02X 0x%02X) : distance index = %d, table index = %d" % (r, g, b, best_index, table_index)
-
-
return counts
-
-
if __name__ == ’__main__’ :
-
counts = []
-
for i in xrange(216) :
-
counts.append(0)
-
-
# initialize reference palette
-
color_steps = [ 0xFF, 0xCC, 0x99, 0x66, 0x33, 0x00 ]
-
for r in color_steps :
-
for g in color_steps :
-
for b in color_steps :
-
palette.append([r, g, b])
-
-
# initialize palette conversion table
-
for i in range(0, 26) :
-
pal8_table.append(5)
-
for i in range(26, 77) :
-
pal8_table.append(4)
-
for i in range(77, 128) :
-
pal8_table.append(3)
-
for i in range(128, 179) :
-
pal8_table.append(2)
-
for i in range(179, 230) :
-
pal8_table.append(1)
-
for i in range(230, 256) :
-
pal8_table.append(0)
-
-
# create a pool of worker threads and break up the overall job
-
pool = Pool()
-
it = pool.imap_unordered(process_r, range(256))
-
try :
-
while 1 :
-
partial_counts = it.next()
-
for i in xrange(216) :
-
counts[i] += partial_counts[i]
-
except StopIteration :
-
pass
-
-
print "index, count, red, green, blue"
-
for i in xrange(len(counts)) :
-
print "%d, %d, %d, %d, %d" % (i, counts[i], palette[i][0], palette[i][1], palette[i][2])
-