
Recherche avancée
Autres articles (53)
-
Mise à disposition des fichiers
14 avril 2011, parPar défaut, lors de son initialisation, MediaSPIP ne permet pas aux visiteurs de télécharger les fichiers qu’ils soient originaux ou le résultat de leur transformation ou encodage. Il permet uniquement de les visualiser.
Cependant, il est possible et facile d’autoriser les visiteurs à avoir accès à ces documents et ce sous différentes formes.
Tout cela se passe dans la page de configuration du squelette. Il vous faut aller dans l’espace d’administration du canal, et choisir dans la navigation (...) -
Use, discuss, criticize
13 avril 2011, parTalk to people directly involved in MediaSPIP’s development, or to people around you who could use MediaSPIP to share, enhance or develop their creative projects.
The bigger the community, the more MediaSPIP’s potential will be explored and the faster the software will evolve.
A discussion list is available for all exchanges between users. -
Le plugin : Podcasts.
14 juillet 2010, parLe problème du podcasting est à nouveau un problème révélateur de la normalisation des transports de données sur Internet.
Deux formats intéressants existent : Celui développé par Apple, très axé sur l’utilisation d’iTunes dont la SPEC est ici ; Le format "Media RSS Module" qui est plus "libre" notamment soutenu par Yahoo et le logiciel Miro ;
Types de fichiers supportés dans les flux
Le format d’Apple n’autorise que les formats suivants dans ses flux : .mp3 audio/mpeg .m4a audio/x-m4a .mp4 (...)
Sur d’autres sites (5875)
-
Anomalie #4449 (Nouveau) : Taille d’image erronné des logos si un redimensionnement de l’image
25 février 2020Pour le contexte, le problème est signalé là https://github.com/marcimat/bigup/issues/9 mais ne provient pas de Bigup.
Pour reproduire :¶
- définir dans mes_options.php les constantes :
- <span class="CodeRay"><span class="predefined">define</span>(<span class="string"><span class="delimiter">'</span><span class="content">_IMG_MAX_WIDTH</span><span class="delimiter">'</span></span>, <span class="integer">3000</span>);
- <span class="predefined">define</span>(<span class="string"><span class="delimiter">'</span><span class="content">_IMG_MAX_HEIGHT</span><span class="delimiter">'</span></span>, <span class="integer">1000</span>);
- </span>
- ajouter un plus grand logo (en SPIP 3.3+) sur un élément, par exemple un article
- l’aperçu au retour retourne une image erronée, avec les dimensions de l’images d’origine (alors que l’image a réellement été redimensionnée sur le disque)
- au rechargement la taille est affichée correctement, mais la miniature est toujours incorrecteSuppositions¶
Il semblerait que les filtres
largeur()
ethauteur()
utilisés par image_reduire, et par l’affichage du logo aient un cache qui enregistre la taille de l’image originale la première fois qu’ils sont appelés, mais si cette image est modifiée (réduite) ensuite, un appel ultérieur à ces fonctions retourne la valeur en cache.La réduction se fait dans
verifier_taille_document_acceptable()
de action/ajouter_documents.php du plugin medias, qui prend en comptel les constantes_IMG_MAX_WIDTH
et_IMG_MAX_HEIGHT
indiquées. -
How add Data Stream into MXF(using mpeg2video) file with FFmpeg and C/C++
26 mars 2019, par Helmuth SchmitzI’m a little bit stuck here trying create a MXF file
with data stream on it. I have several MXF video files that contain
this standard**1 Video Stream:
Stream #0:0: Video: mpeg2video (4:2:2), yuv422p(tv, bt709, top first), 1920x1080 [SAR 1:1 DAR 16:9], 50000 kb/s, 29.9
16 audio streams
Audio: pcm_s24le, 48000 Hz, 1 channels, s32 (24 bit), 1152 kb/s
1 Data Stream:
Data: none**This data stream, contain personal data inside video file. I can
open this stream and data is really there. Is all ok. But, when i try
to create a file exactly like this, everytime i call "avformat_write_header"
it returns an error.If i do comment the creation of this data streams the video file is succeffully
created.If i change to "mpegts" with this data stream, the video file is also succeffully
created.But, i can’t use mpets and i need this data stream.
I know that is possible MXF with data stream cause i have this originals files
that have this combination.So, i know that i missing something in my code.
This is the way i create this Data Stream :
void CFFmpegVideoWriter::addDataStream(EOutputStream *ost, AVFormatContext *oc, AVCodec **codec, enum AVCodecID codec_id)
{
AVCodecParameters *par;
ost->stream = avformat_new_stream(oc, NULL);
if (ost->stream == NULL)
{
fprintf(stderr, "OOooohhh man: avformat_new_stream() failed.\n");
return;
}
par = ost->stream->codecpar;
ost->stream->index = 17;
par->codec_id = AV_CODEC_ID_NONE;
par->codec_type = AVMEDIA_TYPE_DATA;
ost->stream->codec->flags |= AV_CODEC_FLAG_GLOBAL_HEADER;
}the file openning is this :
CFFMpegVideoWriter::CFFMpegVideoWriter(QString outputfilename) : QThread()
{
av_register_all();
avcodec_register_all();
isOpen = false;
shouldClose = false;
frameIndex = 0;
#ifdef __linux__
QByteArray bFilename = outputfilename.toUtf8();
#else
QByteArray bFilename = outputfilename.toLatin1();
#endif
const char* filename = bFilename.data();
codecContext = NULL;
//encontra o formato desejado...
outputFormat = av_guess_format("mp2v", filename, nullptr);
if (!outputFormat)
{
qDebug("Could not find suitable output format\n");
return;
}
//encontra o codec...
codec = avcodec_find_encoder(outputFormat->video_codec);
if (!codec)
{
qDebug( "Codec not found\n");
return;
}
//aloca o contexto do codec...
codecContext = avcodec_alloc_context3(codec);
codecContext->field_order = AV_FIELD_TT;
codecContext->profile = FF_PROFILE_MPEG2_422;
//aloca o contexto do formato...
formatContext = avformat_alloc_context();
formatContext->oformat = outputFormat;
//aloca o contexto da midia de saida...
avformat_alloc_output_context2(&formatContext, NULL, NULL, filename);
if (!formatContext)
{
qDebug("Erro");
return;
}
videoStream.tmp_frame = NULL;
videoStream.swr_ctx = NULL;
//adiciona a stream de video...
if (outputFormat->video_codec != AV_CODEC_ID_NONE)
{
addVideoStream(&videoStream, formatContext, &video_codec, outputFormat->video_codec);
}
//adiciona as 16 streams de audio...
if (outputFormat->audio_codec != AV_CODEC_ID_NONE)
{
for (int i = 0; i < 16; i++)
{
addAudioStream(&audioStream[i], formatContext, &audio_codec, outputFormat->audio_codec);
}
}
addDataStream(&datastream, formatContext, &video_codec, outputFormat->video_codec);
videoStream.sws_ctx = NULL;
for (int i = 0; i < 16; i++)
{
audioStream[i].sws_ctx = NULL;
}
opt = NULL;
//carreca o codec de video para stream de video...
initVideoCodec(formatContext, video_codec, &videoStream, opt);
//carrega o codec de audio para stream de audio...s
for (int i = 0; i < 16; i++)
{
initAudioCodec(formatContext, audio_codec, &audioStream[i], opt);
}
av_dump_format(formatContext, 0, filename, 1);
//abrea o arquivo de saida..
if (!(outputFormat->flags & AVFMT_NOFILE))
{
ret = avio_open(&formatContext->pb, filename, AVIO_FLAG_WRITE);
if (ret < 0)
{
qDebug("Could not open'%s", filename);
return;
}
}
//escreve o cabecalho do arquivo...
ret = avformat_write_header(formatContext, &opt);
if (ret < 0)
{
qDebug("Error occurred when opening output file");
return;
}
isOpen = true;
QThread::start();
}The code always fails at "avformat_write_header" call.
But if i remove "datastream" or change it to mpegts everything runs fine.
Any ideia of what am i doing wrong here ?
Thanks for reading this.
Helmuth
-
WARN : Tried to pass invalid video frame, marking as broken : Your frame has data type int64, but we require uint8
5 septembre 2019, par Tavo DiazI am doing some Udemy AI courses and came across with one that "teaches" a bidimensional cheetah how to walk. I was doing the exercises on my computer, but it takes too much time. I decided to use Google Cloud to run the code and see the results some hours after. Nevertheless, when I run the code I get the following error " WARN : Tried to pass
invalid video frame, marking as broken : Your frame has data type int64, but we require uint8 (i.e. RGB values from 0-255)".After the code is executed, I see into the folder and I don’t see any videos (just the meta info).
Some more info (if it helps) :
I have a 1 CPU (4g), SSD Ubuntu 16.04 LTSI have not tried anything yet to solve it because I don´t know what to try. Im looking for solutions on the web, but nothing I could try.
This is the code
import os
import numpy as np
import gym
from gym import wrappers
import pybullet_envs
class Hp():
def __init__(self):
self.nb_steps = 1000
self.episode_lenght = 1000
self.learning_rate = 0.02
self.nb_directions = 32
self.nb_best_directions = 32
assert self.nb_best_directions <= self.nb_directions
self.noise = 0.03
self.seed = 1
self.env_name = 'HalfCheetahBulletEnv-v0'
class Normalizer():
def __init__(self, nb_inputs):
self.n = np.zeros(nb_inputs)
self.mean = np.zeros(nb_inputs)
self.mean_diff = np.zeros(nb_inputs)
self.var = np.zeros(nb_inputs)
def observe(self, x):
self.n += 1.
last_mean = self.mean.copy()
self.mean += (x - self.mean) / self.n
#abajo es el online numerator update
self.mean_diff += (x - last_mean) * (x - self.mean)
#abajo online computation de la varianza
self.var = (self.mean_diff / self.n).clip(min = 1e-2)
def normalize(self, inputs):
obs_mean = self.mean
obs_std = np.sqrt(self.var)
return (inputs - obs_mean) / obs_std
class Policy():
def __init__(self, input_size, output_size):
self.theta = np.zeros((output_size, input_size))
def evaluate(self, input, delta = None, direction = None):
if direction is None:
return self.theta.dot(input)
elif direction == 'positive':
return (self.theta + hp.noise * delta).dot(input)
else:
return (self.theta - hp.noise * delta).dot(input)
def sample_deltas(self):
return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)]
def update (self, rollouts, sigma_r):
step = np.zeros(self.theta.shape)
for r_pos, r_neg, d in rollouts:
step += (r_pos - r_neg) * d
self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step
def explore(env, normalizer, policy, direction = None, delta = None):
state = env.reset()
done = False
num_plays = 0.
#abajo puede ser promedio de las rewards
sum_rewards = 0
while not done and num_plays < hp.episode_lenght:
normalizer.observe(state)
state = normalizer.normalize(state)
action = policy.evaluate(state, delta, direction)
state, reward, done, _ = env.step(action)
reward = max(min(reward, 1), -1)
#abajo sería poner un promedio
sum_rewards += reward
num_plays += 1
return sum_rewards
def train (env, policy, normalizer, hp):
for step in range(hp.nb_steps):
#iniciar las perturbaciones deltas y los rewards positivos/negativos
deltas = policy.sample_deltas()
positive_rewards = [0] * hp.nb_directions
negative_rewards = [0] * hp.nb_directions
#sacar las rewards en la dirección positiva
for k in range(hp.nb_directions):
positive_rewards[k] = explore(env, normalizer, policy, direction = 'positive', delta = deltas[k])
#sacar las rewards en dirección negativo
for k in range(hp.nb_directions):
negative_rewards[k] = explore(env, normalizer, policy, direction = 'negative', delta = deltas[k])
#sacar todas las rewards para sacar la desvest
all_rewards = np.array(positive_rewards + negative_rewards)
sigma_r = all_rewards.std()
#acomodar los rollauts por el max (r_pos, r_neg) y seleccionar la mejor dirección
scores = {k:max(r_pos, r_neg) for k, (r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards))}
order = sorted(scores.keys(), key = lambda x:scores[x])[:hp.nb_best_directions]
rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
#actualizar policy
policy.update (rollouts, sigma_r)
#poner el final reward del policy luego del update
reward_evaluation = explore (env, normalizer, policy)
print('Paso: ', step, 'Lejania: ', reward_evaluation)
def mkdir(base, name):
path = os.path.join(base, name)
if not os.path.exists(path):
os.makedirs(path)
return path
work_dir = mkdir('exp', 'brs')
monitor_dir = mkdir(work_dir, 'monitor')
hp = Hp()
np.random.seed(hp.seed)
env = gym.make(hp.env_name)
env = wrappers.Monitor(env, monitor_dir, force = True)
nb_inputs = env.observation_space.shape[0]
nb_outputs = env.action_space.shape[0]
policy = Policy(nb_inputs, nb_outputs)
normalizer = Normalizer(nb_inputs)
train(env, policy, normalizer, hp)