Recherche avancée

Médias (91)

Autres articles (85)

  • MediaSPIP v0.2

    21 juin 2013, par

    MediaSPIP 0.2 est la première version de MediaSPIP stable.
    Sa date de sortie officielle est le 21 juin 2013 et est annoncée ici.
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Comme pour la version précédente, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • Le profil des utilisateurs

    12 avril 2011, par

    Chaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
    L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)

  • MediaSPIP version 0.1 Beta

    16 avril 2011, par

    MediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

Sur d’autres sites (6125)

  • Revision 32596 : minuscules et fin pour aujourd’hui

    1er novembre 2009, par fil@… — Log

    minuscules et fin pour aujourd’hui

  • My SBC Collection

    31 décembre 2023, par Multimedia Mike — General

    Like many computer nerds in the last decade, I have accumulated more than a few single-board computers, or “SBCs”, which are small computers based around a system-on-a-chip (SoC) that nearly always features an ARM CPU at its core. Surprisingly few of these units are Raspberry Pi units, though that brand has come to exemplify and dominate the product category.

    Also, as is the case for many computer nerds, most of these SBCs lay fallow for years at a time. Equipped with an inexpensive lightbox that I procured in the last year, I decided I could at least create glamour shots of various units and catalog them in a blog post.

    While Raspberry Pi still enjoys the most mindshare far and away, and while I do have a few Raspberry Pi units in my inventory, I have always been a bigger fan of the ODROID brand, which works with convenient importers around the world (in the USA, I can vouch for Ameridroid, to whom I’ve forked over a fair amount of cash for these computing toys).

    As mentioned, Raspberry Pi undisputedly has the most mindshare of all these SBC brands and I often wonder why… and then I immediately remind myself that it has the biggest ecosystem, and has a variety of turnkey projects and applications (such as Pi-hole and PiVPN) that promise a lower barrier to entry — as well as a slightly lower price point — than some of these other options. ODROID had a decent ecosystem for awhile, especially considering the monthly ODROID Magazine, though that ceased publication in July 2020. The Raspberry Pi and its variants were famously difficult to come by due to the global chip shortage from 2021-2023. Meanwhile, I had no trouble procuring these boards during the same timeframe.

    So let’s delve into the collection…

    Cubieboard
    The Raspberry Pi came out in 2012 and by 2013 I was somewhat coveting one to hack on. Finally ! An accessible ARM platform to play with. I had heard of the BeagleBoard for years but never tried to get my hands on one. I was thinking about taking the plunge on a new Raspberry Pi, but a colleague told me I should skip that and go with this new hotness called the Cubieboard, based on an Allwinner SoC. The big value-add that this board had vs. a Raspberry Pi was that it had a SATA adapter. Although now that it has been a decade, it only now occurs to me to quander whether it was true SATA or a USB-to-SATA bridge. Looking it up now, I’m led to believe that the SoC supported the functionality natively.

    Anyway, I did get it up and running but never did much with it, thus setting the tone for future SBC endeavors. No photos because I gave it to another tech enthusiast years ago, whose SBC collection dwarfs my own.

    ODROID-XU4
    I can’t recall exactly when or how I first encountered the ODROID brand. I probably read about it on some enthusiast page or another circa 2014 and decided to try one out. I eventually acquired a total of 3 of these ODROID-XU4 units, each with a different case, 1 with a fan and 2 passively-cooled :

    Collection of ODROID-XU4 SBCs

    Collection of ODROID-XU4 SBCs

    This is based on the Samsung Exynos 5422 SoC, the same series as was used in their Note 3 phone released in 2013. It has been a fun chip to play with. The XU4 was also my first introduction to the eMMC storage solution that is commonly supported on the ODROID SBCs (alongside micro-SD). eMMC offers many benefits over SD in terms of read/write speed as well as well as longevity/write cycles. That’s getting less relevant these days, however, as more and more SBCs are being released with direct NVMe SSD support.

    I had initially wanted to make a retro-gaming device built on this platform (see the handheld section later for more meditations on that). In support of this common hobbyist goal, there is this nifty case XU4 case which apes the aesthetic of the Nintendo N64 :

    ODROID-XU4 N64-style case

    ODROID-XU4 N64-style case

    It even has a cool programmable LCD screen. Maybe one day I’ll find a use for it.

    For awhile, one of these XU4 units (likely the noisy, fan-cooled one) was contributing results to the FFmpeg FATE system.

    While it features gigabit ethernet and a USB3 port, I once tried to see if I could get 2 Gbps throughput with the unit using a USB3-gigabit dongle. I had curious results in that the total amount of traffic throughput could never exceed 1 Gbps across both interfaces. I.e., if 1 interface was dealing with 1 Gbps and the other interface tried to run at 1 Gbps, they would both only run at 500 Mbps. That remains a mystery to me since I don’t see that limitation with Intel chips.

    Still, the XU4 has been useful for a variety of projects and prototyping over the years.

    ODROID-HC2 NAS
    I find that a lot of my fellow nerds massively overengineer their homelab NAS setups. I’ll explore this in a future post. For my part, people tend to find my homelab NAS solution slightly underengineered. This is the ODROID-HC2 (the “HC” stands for “Home Cloud”) :

    ODROID-HC2 NAS

    ODROID-HC2 NAS

    It has the same guts as the ODROID-XU4 except no video output and the USB3 function is leveraged for a SATA bridge. This allows you to plug a SATA hard drive directly into the unit :

    ODROID-HC2 NAS uncovered

    ODROID-HC2 NAS uncovered

    Believe it or not, this has been my home NAS solution for something like 6 or 7 years now– I don’t clearly remember when I purchased it and put it into service.

    But isn’t this sort of irresponsible ? What about a failure of the main drive ? That’s why I have an external drive connected for backing up the most important data via rsync :

    ODROID-HC2 NAS backup enclosure

    ODROID-HC2 NAS backup enclosure

    The power consumption can’t be beat– Profiling for a few weeks of average usage worked out to 4.5 kWh for the ODROID-HC2… per month.

    ODROID-C2
    I was on a kick of ordering more SBCs at one point. This is the ODROID-C2, equipped with a 64-bit Amlogic SoC :

    ODROID-C2

    ODROID-C2

    I had this on the FATE farm for awhile, performing 64-bit ARM builds (vs. the XU4’s 32-bit builds). As memory serves, it was unreliable and would occasionally freeze up.

    Here is a view of the eMMC storage through the bottom of the translucent case :

    Bottom of ODROID-C2 with view of eMMC storage

    Bottom of ODROID-C2 with view of eMMC storage

    ODROID-N2+
    Out of all my ODROID SBCs, this is the unit that I long to “get back to” the most– the ODROID-N2+ :

    ODROID-N2+

    ODROID-N2+

    Very capable unit that makes a great little desktop. I have some projects I want to develop using it so that it will force me to have a focused development environment.

    Raspberry Pi
    Eventually, I did break down and get a Raspberry Pi. I had a specific purpose in mind and, much to my surprise, I have stuck to it :

    Original Raspberry Pi

    Original Raspberry Pi

    I was using one of the ODROID-XU4 units as a VPN gateway. Eventually, I wanted to convert the XU4 to something else and I decided to run the VPN gateway as an appliance on the simplest device I could. So I procured this complete hand-me-down unit from eBay and went to work. This was also the first time I discovered the DietPi distribution and this box has been in service running Wireguard via PiVPN for many years.

    I also have a Raspberry Pi 3B+ kicking around somewhere. I used it as a Steam Link device for awhile.

    SOPINE + Baseboard
    Also procured when I was on this “let’s buy random SBCs” kick. The Pine64 SOPINE is actually a compute module that comes in the form factor of a memory module.

    Pine64 SOPINE Compute Module

    Pine64 SOPINE Compute Module

    Back to using Allwinner SoCs. In order to make this thing useful, you need to place it in something. It’s possible to get a mini-ITX form factor board that can accommodate 7 of these modules. Before going to that extreme, there is this much simpler baseboard which can also use eMMC for storage.

    Baseboard with SOPINE, eMMC, and heat sinks

    Baseboard with SOPINE, eMMC, and heat sinks

    I really need to find an appropriate case for this one as it currently performs its duty while sitting on an anti-static bag.

    NanoPi NEO3
    I enjoy running the DietPi distribution on many of these SBCs (as it’s developed not just for Raspberry Pi). I have also found their website to be a useful resource for discovering new SBCs. That’s how I found the NanoPi series and zeroed in on this NEO3 unit, sporting a Rockchip SoC, and photographed here with some American currency in order to illustrate its relative size :

    NanoPi NEO3

    NanoPi NEO3

    I often forget about this computer because it’s off in another room, just quietly performing its assigned duty.

    MangoPi MQ-Pro
    So far, I’ve heard of these fruits prepending the Greek letter pi for naming small computing products :

    • Raspberry – the O.G.
    • Banana – seems to be popular for hobbyist router/switches
    • Orange
    • Atomic
    • Nano
    • Mango

    Okay, so the AtomicPi and NanoPi names don’t really make sense considering the fruit convention.

    Anyway, the newest entry is the MangoPi. These showed up on Ameridroid a few months ago. There are 2 variants : the MQ-Pro and the MQ-Quad. I picked one and rolled with it.

    MangoPi MQ-Pro pieces arrive

    MangoPi MQ-Pro pieces arrive

    When it arrived, I unpacked it, assembled the pieces, downloaded a distro, tossed that on a micro-SD card, connected a monitor and keyboard to it via its USB-C port, got the distro up and running, configured the wireless networking with a static IP address and installed sshd, and it was ready to go as a headless server for an edge application.

    MangoPi MQ-Pro components, ready for assembly

    MangoPi MQ-Pro components, ready for assembly

    The unit came with no instructions that I can recall. After I got it set up, I remember thinking, “What is wrong with me ? Why is it that I just know how to do all of this without any documentation ?”

    MangoPi MQ-Pro in first test

    MangoPi MQ-Pro in first test

    Only after I got it up and running and poked around a bit did I realize that this SBC doesn’t have an ARM SoC– it’s a RISC-V SoC. It uses the Allwinner D1, so it looks like I came full circle back to Allwinner.

    MangoPi MQ-Pro with more US coinage for scale

    MangoPi MQ-Pro with more US coinage for scale

    So I now have my first piece of RISC-V hobbyist kit, although I learned recently from Kostya that it’s not that great for multimedia.

    Handheld Gaming Units
    The folks at Hardkernel have also produced a series of handheld retro-gaming devices called ODROID-GO. The first one resembled the original Nintendo Game Boy, came as a kit to be assembled, and emulated 5 classic consoles. It also had some hackability to it. Quite a cool little device, and inexpensive too. I have since passed it along to another gaming enthusiast.

    Later came the ODROID-GO Advance, also a kit, but emulating more devices. I was extremely eager to get my hands on this since it could emulate SNES in addition to NES. It also features a headphone jack, unlike the earlier model. True to form, after I received mine, it took me about 13 months before I got around to assembling it. After that, the biggest challenge I had was trying to find an appropriate case for it.

    ODROID-GO Advance with case and headphones

    ODROID-GO Advance with case and headphones

    Even though it may try to copy the general aesthetic and form factor of the Game Boy Advance, cases for the GBA don’t fit this correctly.

    Further, Hardkernel have also released the ODROID-GO Super and Ultra models that do more and more. The Advance, Super, and Ultra models have powerful SoCs and feature much more hackability than the first ODROID-GO model.

    I know that the guts of the Advance have been used in other products as well. The same is likely true for the Super and Ultra.

    Ultimately, the ODROID-GO Advance was just another project I assembled and then set aside since I like the idea of playing old games much more than actually doing it. Plus, the fact has finally crystalized in my mind over the past few years that I have never enjoyed handheld gaming and likely will never enjoy handheld gaming, even after I started wearing glasses. Not that I’m averse to old Game Boy / Color / Advance games, but if I’m going to play them, I’d rather emulate them on a large display.

    The Future
    In some of my weaker moments, I consider ordering up certain Banana Pi products (like the Banana Pi BPI-R2) with a case and doing my own router tricks using some open source router/firewall solution. And then I remind myself that my existing prosumer-type home router is doing just fine. But maybe one day…

    The post My SBC Collection first appeared on Breaking Eggs And Making Omelettes.

  • GDPR Compliance and Personal Data : The Ultimate Guide

    22 septembre 2023, par Erin — GDPR

    According to the International Data Corporation (IDC), the world generated 109 zettabytes of data in 2022 alone, and that number is on track to nearly triple to 291 zettabytes in 2027. For scale, that’s one trillion gigs or one followed by 21 zeros in bytes.

    A major portion of that data is generated online, and the conditions for securing that digital data can have major real-world consequences. For example, online identifiers that fall into the wrong hands can be used nefariously for cybercrime, identity theft or unwanted targeting. Users also want control over how their actions are tracked online and transparency into how their information is used.

    Therefore, regional and international regulations are necessary to set the terms for respecting users’ privacy and control over personal information. Perhaps the most widely known of these laws is the European Union’s General Data Protection Regulation (GDPR).

    What is personal data under GDPR ?

    Under the General Data Protection Regulation (GDPR), “personal data” refers to information linked to an identifiable natural person. An “identifiable natural person” is someone directly or indirectly recognisable via individually specific descriptors such as physical, genetic, economic, cultural, employment and social details.

    It’s important to note that under GDPR, the definition of personal data is very broad, and it encompasses both information that is commonly considered personal (e.g., names and addresses) and more technical or specialised data (e.g., IP addresses or device IDs) that can be used to identify individuals indirectly.

    Organisations that handle personal data must adhere to strict rules and principles regarding the processing and protection of this data to ensure individuals’ privacy rights are respected and upheld.

    Personal data can include, but is not limited to, the following :

    1. Basic Identity Information : This includes a person’s name, government-issued ID number, social address, phone number, email address or other similar identifiers.
    2. Biographical Information : Details such as date of birth, place of birth, nationality and gender.
    3. Contact Information : Information that allows communication with the individual, such as phone numbers, email addresses or mailing addresses.
    4. Financial Information : Data related to a person’s finances, including credit card numbers, bank account numbers, income records or financial transactions.
    5. Health and Medical Information : Information about a person’s health, medical history or healthcare treatments.
    6. Location Data : Data that can pinpoint a person’s geographical location, such as GPS coordinates or information derived from mobile devices.
    7. Online Identifiers : Information like IP addresses, cookies or other online tracking mechanisms that can be used to identify or track individuals online.
    8. Biometric Data : Unique physical or behavioural characteristics used for identification, such as fingerprints, facial recognition data or voiceprints.

    Sensitive Data

    Sensitive data is a special category of personal data prohibited from processing unless specific conditions are met, including users giving explicit consent. The data must also be necessary to fulfil one or more of a limited set of allowed purposes, such as reasons related to employment, social protections or legal claims.

    Sensitive information includes details about a person’s racial or ethnic origin, sexual orientation, political opinions, religion, trade union membership, biometric data or genetic data.

    What are the 7 main principles of GDPR ?

    The 7 principles of GDPR guide companies in how to properly handle personal data gathered from their users.

    A list of the main principles to follow for GDPR personal data handling

    The seven principles of GDPR are :

    1. Lawfulness, fairness and transparency

    Lawfulness means having legal grounds for data processing, such as consent, legitimate interests, contract and legal obligation. If you can achieve your objective without processing personal data, the basis is no longer lawful.

    Fairness means you’re processing data reasonably and in line with users’ best interests, and they wouldn’t be shocked if they find out what you’re using it for.

    Transparency means being open regarding when you’re processing user data, what you’re using it for and who you’re collecting it from.

    To get started with this, use our guide on creating a GDPR-compliant privacy policy.

    2. Purpose limitation

    You should only process user data for the original purposes you communicated to users when requesting their explicit consent. If you aim to undertake a new purpose, it must be compatible with the original stated purpose. Otherwise, you’ll need to ask for consent again.

    3. Data minimisation

    You should only collect as much data as you need to accomplish compliant objectives and nothing more, especially not other personally identifiable information (PII).

    Matomo provides several features for extensive data minimisation, including the ability to anonymize IP addresses.

    Data minimisation is well-liked by users. Around 70% of people have taken active steps towards protecting their identity online, so they’ll likely appreciate any principles that help them in this effort.

    4. Accuracy

    The user data you process should be accurate and up-to-date where necessary. You should have reasonable systems to catch inaccurate data and correct or delete it. If there are mistakes that you need to store, then you need to label them clearly as mistakes to keep them from being processed as accurate.

    5. Storage limitation

    This principle requires you to eliminate data you’re no longer using for the original purposes. You must implement time limits, after which you’ll delete or anonymize any user data on record. Matomo allows you to configure your system such that logs are automatically deleted after some time.

    6. Integrity and confidentiality

    This requires that data processors have security measures in place to protect data from threats such as hackers, loss and damage. As an open-source web analytics solution, Matomo enables you to verify its security first-hand.

    7. Accountability

    Accountability means you’re responsible for what you do with the data you collect. It’s your duty to maintain compliance and document everything for audits. Matomo tracks a lot of the data you’d need for this, including activity, task and application logs.

    Who does GDPR apply to ?

    The GDPR applies to any company that processes the personal data of EU citizens and residents (regardless of the location of the company). 

    If this is the first time you’ve heard about this, don’t worry ! Matomo provides tools that allow you to determine exactly what kinds of data you’re collecting and how they must be handled for full compliance. 

    Best practices for processing personal data under GDPR

    Companies subject to the GDPR need to be aware of several key principles and best practices to ensure they process personal data in a lawful and responsible manner.

    Here are some essential practices to implement :

    1. Lawful basis for processing : Organisations must have a lawful basis for processing personal data. Common lawful bases include the necessity of processing for compliance with a legal obligation, the performance of a contract, the protection of vital interests and tasks carried out in the public interest. Your organisation’s legitimate interests for processing must not override the individual’s legal rights. 
    2. Data minimisation : Collect and process only the personal data that is necessary for the specific purpose for which it was collected. Matomo’s anonymisation capabilities help you avoid collecting excessive or irrelevant data.
    3. Transparency : Provide clear and concise information to individuals about how their data will be processed. Privacy statements should be clear and accessible to users to allow them to easily understand how their data is used.
    4. Consent : If you are relying on consent as a lawful basis, make sure you design your privacy statements and consent forms to be usable. This lets you ensure that consent is freely given, specific, informed and unambiguous. Also, individuals must be able to withdraw their consent at any time.
    5. Data subject rights : You must have mechanisms in place to uphold the data subject’s individual rights, such as the rights to access, erase, rectify errors and restrict processing. Establish internal processes for handling such requests.
    6. Data protection impact assessments (DPIAs) : Conduct DPIAs for high-risk processing activities, especially when introducing new technologies or processing sensitive data.
    7. Security measures : You must implement appropriate technical security measures to maintain the safety of personal data. This can include ‌security tools such as encryption, firewalls and limited access controls, as well as organisational practices like regular security assessments. 
    8. Data breach response : Develop and maintain a data breach response plan. Notify relevant authorities and affected individuals of data breaches within the required timeframe.
    9. International data transfers : If transferring personal data outside the EU, ensure that appropriate safeguards are in place and consider GDPR provisions. These provisions allow data transfers from the EU to non-EU countries in three main ways :
      1. When the destination country has been deemed by the European Commission to have adequate data protection, making it similar to transferring data within the EU.
      2. Through the use of safeguards like binding corporate rules, approved contractual clauses or adherence to codes of conduct.
      3. In specific situations when none of the above apply, such as when an individual explicitly consents to the transfer after being informed of the associated risks.
    10. Data protection officers (DPOs) : Appoint a data protection officer if required by GDPR. DPOs are responsible for overseeing data protection compliance within the organisation.
    11. Privacy by design and default : Integrate data protection into the design of systems and processes. Default settings should prioritise user privacy, as is the case with something like Matomo’s first-party cookies.
    12. Documentation : Maintain records of data processing activities, including data protection policies, procedures and agreements. Matomo logs and backs up web server access, activity and more, providing a solid audit trail.
    13. Employee training : Employees who handle personal data must be properly trained to uphold data protection principles and GDPR compliance best practices. 
    14. Third-party contracts : If sharing data with third parties, have data processing agreements in place that outline the responsibilities and obligations of each party regarding data protection.
    15. Regular audits and assessments : Conduct periodic audits and assessments of data processing activities to ensure ongoing compliance. As mentioned previously, Matomo tracks and saves several key statistics and metrics that you’d need for a successful audit.
    16. Accountability : Demonstrate accountability by documenting and regularly reviewing compliance efforts. Be prepared to provide evidence of compliance to data protection authorities.
    17. Data protection impact on data analytics and marketing : Understand how GDPR impacts data analytics and marketing activities, including obtaining valid consent for marketing communications.

    Organisations should be on the lookout for GDPR updates, as the regulations may evolve over time. When in doubt, consult legal and privacy professionals to ensure compliance, as non-compliance could potentially result in significant fines, damage to reputation and legal consequences.

    What constitutes a GDPR breach ?

    Security incidents that compromise the confidentiality, integrity and/or availability of personal data are considered a breach under GDPR. This means a breach is not limited to leaks ; if you accidentally lose or delete personal data, its availability is compromised, which is technically considered a breach.

    What are the penalty fines for GDPR non-compliance ?

    The penalty fines for GDPR non-compliance are up to €20 million or up to 4% of the company’s revenue from the previous fiscal year, whichever is higher. This makes it so that small companies can also get fined, no matter how low-profile the breach is.

    In 2022, for instance, a company found to have mishandled user data was fined €2,000, and the webmaster responsible was personally fined €150.

    Is Matomo GDPR compliant ?

    Matomo is fully GDPR compliant and can ensure you achieve compliance, too. Here’s how :

    • Data anonymization and IP anonymization
    • GDPR Manager that helps you identify gaps in your compliance and address them effectively
    • Users can opt-out of all tracking
    • First-party cookies by default
    • Users can view the data collected
    • Capabilities to delete visitor data when requested
    • You own your data and it is not used for any other purposes (like advertising)
    • Visitor logs and profiles can be disabled
    • Data is stored in the EU (Matomo Cloud) or in any country of your choice (Matomo On-Premise)

    Is there a GDPR in the US ?

    There is no GDPR-equivalent law that covers the US as a whole. That said, US-based companies processing data from persons in the EU still need to adhere to GDPR principles.

    While there isn’t a federal data protection law, several states have enacted their own. One notable example is the California Consumer Privacy Act (CCPA), which Matomo is fully compliant with.

    Ready for GDPR-compliant analytics ?

    The GDPR lays out a set of regulations and penalties that govern the collection and processing of personal data from EU citizens and residents. A breach under GDPR attracts a fine of either up to €20 million or 4% of the company’s revenue, and the penalty applies to companies of all sizes.

    Matomo is fully GDPR compliant and provides several features and advanced privacy settings to ensure you ‌are as well, without sacrificing the resources you need for effective analytics. If you’re ready to get started, sign up for a 21-day free trial of Matomo — no credit card required.

    Disclaimer
    We are not lawyers and don’t claim to be. The information provided here is to help give an introduction to GDPR. We encourage every business and website to take data privacy seriously and discuss these issues with your lawyer if you have any concerns.