
Recherche avancée
Médias (91)
-
999,999
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
The Slip - Artworks
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
-
Demon seed (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
The four of us are dying (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Corona radiata (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Lights in the sky (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
Autres articles (52)
-
MediaSPIP v0.2
21 juin 2013, parMediaSPIP 0.2 est la première version de MediaSPIP stable.
Sa date de sortie officielle est le 21 juin 2013 et est annoncée ici.
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Comme pour la version précédente, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...) -
Mise à disposition des fichiers
14 avril 2011, parPar défaut, lors de son initialisation, MediaSPIP ne permet pas aux visiteurs de télécharger les fichiers qu’ils soient originaux ou le résultat de leur transformation ou encodage. Il permet uniquement de les visualiser.
Cependant, il est possible et facile d’autoriser les visiteurs à avoir accès à ces documents et ce sous différentes formes.
Tout cela se passe dans la page de configuration du squelette. Il vous faut aller dans l’espace d’administration du canal, et choisir dans la navigation (...) -
MediaSPIP version 0.1 Beta
16 avril 2011, parMediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)
Sur d’autres sites (5958)
-
How to retrieve, process and display frames from a capture device with minimal latency
14 mars 2024, par valleI'm currently working on a project where I need to retrieve frames from a capture device, process them, and display them with minimal latency and compression. Initially, my goal is to maintain the video stream as close to the source signal as possible, ensuring no noticeable compression or latency. However, as the project progresses, I also want to adjust framerate and apply image compression.


I have experimented using FFmpeg, since that was the first thing that came to my mind when thinking about capturing video(frames) and processing them.


However I am not satisfied yet, since I am experiencing delay in the stream. (No huge delay but definately noticable)
The command that worked best so far for me :


ffmpeg -rtbufsize 512M -f dshow -i video="Blackmagic WDM Capture (4)" -vf format=yuv420p -c:v libx264 -preset ultrafast -qp 0 -an -tune zerolatency -f h264 - | ffplay -fflags nobuffer -flags low_delay -probesize 32 -sync ext -


I also used OBS to capture the video stream from the capture device and when looking into the preview there was no noticable delay. I then tried to simulate the exact same settings using ffmpeg :


ffmpeg -rtbufsize 512M -f dshow -i video="Blackmagic WDM Capture (4)" -vf format=yuv420p -r 60 -c:v libx264 -preset veryfast -b:v 2500K -an -tune zerolatency -f h264 - | ffplay -fflags nobuffer -flags low_delay -probesize 32 -sync ext -


But the delay was kind of similar to the one of the command above.
I know that OBS probably has a lot complexer stuff going on (Hardware optimization etc.) but atleast I know this way that it´s somehow possible to display the stream from the capture device without any noticable latency (On my setup).


The approach that so far worked best for me (In terms of delay) was to use Python and OpenCV to read frames of the capture device and display them. I also implemented my own framerate (Not perfect I know) but when it comes to compression I am rather limited compared to FFmpeg and the frame processing is also too slow when reaching framerates about 20 fps and more.


import cv2
import time

# Set desired parameters
FRAME_RATE = 15 # Framerate in frames per second
COMPRESSION_QUALITY = 25 # Compression quality for JPEG format (0-100)
COMPRESSION_FLAG = True # Enable / Disable compression

# Set capture device index (replace 0 with the index of your capture card)
cap = cv2.VideoCapture(4, cv2.CAP_DSHOW)

# Check if the capture device is opened successfully
if not cap.isOpened():
 print("Error: Could not open capture device")
 exit()

# Create an OpenCV window
# TODO: The window is scaled to fullscreen here (The source video is 1920x1080, the display is 1920x1200)
# I don´t know the scaling algorithm behind this, but it seems to be a simple stretch / nearest neighbor
cv2.namedWindow('Frame', cv2.WINDOW_NORMAL)
cv2.setWindowProperty('Frame', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)

# Loop to capture and display frames
while True:
 # Start timer for each frame processing cycle
 start_time = time.time()

 # Capture frame-by-frame
 ret, frame = cap.read()

 # If frame is read correctly, proceed
 if ret:
 if COMPRESSION_FLAG:
 # Perform compression
 _, compressed_frame = cv2.imencode('.jpg', frame, [int(cv2.IMWRITE_JPEG_QUALITY), COMPRESSION_QUALITY])
 # Decode the compressed frame
 frame = cv2.imdecode(compressed_frame, cv2.IMREAD_COLOR)

 # Display the frame
 cv2.imshow('Frame', frame)

 # Calculate elapsed time since the start of this frame processing cycle
 elapsed_time = time.time() - start_time

 # Calculate available time for next frame
 available_time = 1.0 / FRAME_RATE

 # Check if processing time exceeds available time
 if elapsed_time > available_time:
 print("Warning: Frame processing time exceeds available time.")

 # Calculate time to sleep to achieve desired frame rate -> maintain a consistent frame rate
 sleep_time = 1.0 / FRAME_RATE - elapsed_time

 # If sleep time is positive, sleep to control frame rate
 if sleep_time > 0:
 time.sleep(sleep_time)

 # Break the loop if 'q' is pressed
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

# Release the capture object and close the display window
cap.release()
cv2.destroyAllWindows()



I also thought about getting the SDK of the capture device in order to upgrade the my performance.
But Since I am not used to low level programming but rather to scripting languages, I thought I would reach out to the StackOverflow community at first, and see if anybody has some hints to better approaches or any tips how I could increase my performance.


Any Help is appreciated !


-
Revision 3274 : pas nécessite mais utilise
18 avril 2010, par kent1 — Logpas nécessite mais utilise
-
DNN OpenCV Python using RSTP always crash after few minutes
1er juillet 2022, par renaldyksDescription :


I want to create a people counter using DNN. The model I'm using is MobileNetSSD. The camera I use is IPCam from Hikvision. Python communicates with IPCam using the RSTP protocol.


The program that I made is good and there are no bugs, when running the sample video the program does its job well. But when I replaced it with IPcam there was an unknown error.


Error :


Sometimes the error is :


[h264 @ 000001949f7adfc0] error while decoding MB 13 4, bytestream -6
[h264 @ 000001949f825ac0] left block unavailable for requested intra4x4 mode -1
[h264 @ 000001949f825ac0] error while decoding MB 0 17, bytestream 762



Sometimes the error does not appear and the program is killed.



Update Error


After revising the code, I caught the error. The error found is


[h264 @ 0000019289b3fa80] error while decoding MB 4 5, bytestream -25



Now I don't know what to do, because the error is not in Google.


Source Code :


Old Code


This is my very earliest code before getting suggestions from the comments field.


import time
import cv2
import numpy as np
import math
import threading

print("Load MobileNeteSSD model")

prototxt = "MobileNetSSD_deploy.prototxt"
model = "MobileNetSSD_deploy.caffemodel"

CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
 "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
 "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
 "sofa", "train", "tvmonitor"]

net = cv2.dnn.readNetFromCaffe(prototxt, model)

pos_line = 0
offset = 50
car = 0
detected = False
check = 0
prev_frame_time = 0


def detect():
 global check, car, detected
 check = 0
 if(detected == False):
 car += 1
 detected = True


def center_object(x, y, w, h):
 cx = x + int(w / 2)
 cy = y + int(h / 2)
 return cx, cy


def process_frame_MobileNetSSD(next_frame):
 global car, check, detected

 rgb = cv2.cvtColor(next_frame, cv2.COLOR_BGR2RGB)
 (H, W) = next_frame.shape[:2]

 blob = cv2.dnn.blobFromImage(next_frame, size=(300, 300), ddepth=cv2.CV_8U)
 net.setInput(blob, scalefactor=1.0/127.5, mean=[127.5, 127.5, 127.5])
 detections = net.forward()

 for i in np.arange(0, detections.shape[2]):
 confidence = detections[0, 0, i, 2]

 if confidence > 0.5:

 idx = int(detections[0, 0, i, 1])
 if CLASSES[idx] != "person":
 continue

 label = CLASSES[idx]

 box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
 (startX, startY, endX, endY) = box.astype("int")

 center_ob = center_object(startX, startY, endX-startX, endY-startY)
 cv2.circle(next_frame, center_ob, 4, (0, 0, 255), -1)

 if center_ob[0] < (pos_line+offset) and center_ob[0] > (pos_line-offset):
 # car+=1
 detect()

 else:
 check += 1
 if(check >= 5):
 detected = False

 cv2.putText(next_frame, label+' '+str(round(confidence, 2)),
 (startX, startY-10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
 cv2.rectangle(next_frame, (startX, startY),
 (endX, endY), (0, 255, 0), 3)

 return next_frame


def PersonDetection_UsingMobileNetSSD():
 cap = cv2.VideoCapture()
 cap.open("rtsp://admin:Admin12345@192.168.100.20:554/Streaming/channels/2/")

 global car,pos_line,prev_frame_time

 frame_count = 0

 while True:
 try:
 time.sleep(0.1)
 new_frame_time = time.time()
 fps = int(1/(new_frame_time-prev_frame_time))
 prev_frame_time = new_frame_time

 ret, next_frame = cap.read()
 w_video = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
 h_video = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
 pos_line = int(h_video/2)-50

 if ret == False: break

 frame_count += 1
 cv2.line(next_frame, (int(h_video/2), 0),
 (int(h_video/2), int(h_video)), (255, 127, 0), 3)
 next_frame = process_frame_MobileNetSSD(next_frame)

 cv2.rectangle(next_frame, (248,22), (342,8), (0,0,0), -1)
 cv2.putText(next_frame, "Counter : "+str(car), (250, 20),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
 cv2.putText(next_frame, "FPS : "+str(fps), (0, int(h_video)-10),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
 cv2.imshow("Video Original", next_frame)
 # print(car)

 except Exception as e:
 print(str(e))

 if cv2.waitKey(1) & 0xFF == ord('q'): 
 break


 print("/MobileNetSSD Person Detector")


 cap.release()
 cv2.destroyAllWindows()

if __name__ == "__main__":
 t1 = threading.Thread(PersonDetection_UsingMobileNetSSD())
 t1.start()



New Code


I have revised my code and the program still stops taking frames. I just revised the PersonDetection_UsingMobileNetSSD() function. I've also removed the multithreading I was using. The code has been running for about 30 minutes but after a broken frame, the code will never re-execute the program block
if ret == True
.

def PersonDetection_UsingMobileNetSSD():
 cap = cv2.VideoCapture()
 cap.open("rtsp://admin:Admin12345@192.168.100.20:554/Streaming/channels/2/")

 global car,pos_line,prev_frame_time

 frame_count = 0

 while True:
 try:
 if cap.isOpened():
 ret, next_frame = cap.read()
 if ret:
 new_frame_time = time.time()
 fps = int(1/(new_frame_time-prev_frame_time))
 prev_frame_time = new_frame_time
 w_video = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
 h_video = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
 pos_line = int(h_video/2)-50

 # next_frame = cv2.resize(next_frame,(720,480),fx=0,fy=0, interpolation = cv2.INTER_CUBIC)

 if ret == False: break

 frame_count += 1
 cv2.line(next_frame, (int(h_video/2), 0),
 (int(h_video/2), int(h_video)), (255, 127, 0), 3)
 next_frame = process_frame_MobileNetSSD(next_frame)

 cv2.rectangle(next_frame, (248,22), (342,8), (0,0,0), -1)
 cv2.putText(next_frame, "Counter : "+str(car), (250, 20),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
 cv2.putText(next_frame, "FPS : "+str(fps), (0, int(h_video)-10),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
 cv2.imshow("Video Original", next_frame)
 # print(car)
 else:
 print("Crashed Frame")
 else:
 print("Cap is not open")

 except Exception as e:
 print(str(e))

 if cv2.waitKey(1) & 0xFF == ord('q'): 
 break


 print("/MobileNetSSD Person Detector")


 cap.release()
 cv2.destroyAllWindows()



Requirement :


Hardware : Intel i5-1035G1, RAM 8 GB, NVIDIA GeForce MX330


Software : Python 3.6.2 , OpenCV 4.5.1, Numpy 1.16.0


Question :


- 

- What should i do for fixing this error ?
- What causes this to happen ?






Best Regards,



Thanks