Recherche avancée

Médias (0)

Mot : - Tags -/protocoles

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (84)

  • Les formats acceptés

    28 janvier 2010, par

    Les commandes suivantes permettent d’avoir des informations sur les formats et codecs gérés par l’installation local de ffmpeg :
    ffmpeg -codecs ffmpeg -formats
    Les format videos acceptés en entrée
    Cette liste est non exhaustive, elle met en exergue les principaux formats utilisés : h264 : H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 m4v : raw MPEG-4 video format flv : Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Theora wmv :
    Les formats vidéos de sortie possibles
    Dans un premier temps on (...)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • Automated installation script of MediaSPIP

    25 avril 2011, par

    To overcome the difficulties mainly due to the installation of server side software dependencies, an "all-in-one" installation script written in bash was created to facilitate this step on a server with a compatible Linux distribution.
    You must have access to your server via SSH and a root account to use it, which will install the dependencies. Contact your provider if you do not have that.
    The documentation of the use of this installation script is available here.
    The code of this (...)

Sur d’autres sites (5210)

  • Subtitling Sierra VMD Files

    1er juin 2016, par Multimedia Mike — Game Hacking

    I was contacted by a game translation hobbyist from Spain (henceforth known as The Translator). He had set his sights on Sierra’s 7-CD Phantasmagoria. This mammoth game was driven by a lot of FMV files and animations that have speech. These require language translation in the form of video subtitling. He’s lucky that he found possibly the one person on the whole internet who has just the right combination of skill, time, and interest to pull this off. And why would I care about helping ? I guess I share a certain camaraderie with game hackers. Don’t act so surprised. You know what kind of stuff I like to work on.

    The FMV format used in this game is VMD, which makes an appearance in numerous Sierra titles. FFmpeg already supports decoding this format. FFmpeg also supports subtitling video. So, ideally, all that’s necessary to support this goal is to add a muxer for the VMD format which can encode raw video and audio, which the format supports. Implement video compression as extra credit.

    The pipeline that I envisioned looks like this :


    VMD Subtitling Process

    VMD Subtitling Process


    “Trivial !” I surmised. I just never learn, do I ?

    The Plan
    So here’s my initial pitch, outlining the work I estimated that I would need to do towards the stated goal :

    1. Create a new file muxer that produces a syntactically valid VMD file with bogus video and audio data. Make sure it works with both FFmpeg’s playback system as well as the proper Phantasmagoria engine.
    2. Create a new video encoder that essentially operates in pass-through mode while correctly building a palette.
    3. Create a new basic encoder for the video frames.

    A big unknown for me was exactly how subtitle handling operates in FFmpeg. Thanks to this project, I now know. I was concerned because I was pretty sure that font rendering entails anti-aliasing which bodes poorly for keeping the palette count under 256 unique colors.

    Computer Science Puzzle
    When pondering how to process the palette, I was excited for the opportunity to exercise actual computer science. FFmpeg converts frames from paletted frames to full RGB frames. Then it needs to convert them back to paletted frames. I had a vague recollection of solving this problem once before when I was experimenting with a new paletted video codec. I seem to recall that I did the palette conversion in a very naive manner. I just used a static 256-element array and processed each RGB pixel of the frame, seeing if the value already occurred in the table (O(n) lookup) and adding it otherwise.

    There are more efficient algorithms, however, such as hash tables and trees. Somewhere along the line, FFmpeg helpfully acquired a rarely-used tree data structure, which was perfect for this project.

    So I was pretty pleased with this optimization. Too bad this wouldn’t survive to the end of the effort.

    Another palette-related challenge was the fact that a group of pictures would be accumulating a new palette but that palette needed to be recorded before the group. Thus, the muxer needed to have extra logic to rewind the file when the video encoder transmitted a palette change.

    Video Compression
    VMD has a few methods in its compression toolbox. It can use interframe differencing, it has some RLE, or it can code a frame raw. It can also use a custom LZ-like format on top of these. For early prototypes, I elected to leave each frame coded raw. After the concept was proved, I implemented the frame differencing.


    VMD frame #1

    VMD frame #2

    VMD frame difference
    Top frame compared with the middle frame yields the bottom frame : red pixels indicate changes

    Encoding only those red dots in between vast runs of unchanged pixels yielded a vast measurable improvement. The next step was to try wiring up FFmpeg’s existing LZ compression facilities to the encoder. This turned out to be implausible since VMD’s LZ variant has nothing to do with anything FFmpeg already provides. Fortunately, the LZ piece is not absolutely required and the frame differencing + RLE provides plenty of compression.

    Subtitling
    I’ve never done anything, multimedia programming-wise, concerning subtitles. I guess all the entertainment I care about has always been in my native tongue. What a good excuse to program outside of my comfort zone !

    First, I needed to know how to access FFmpeg’s subtitling facilities. Fortunately, The Translator did the legwork on this matter so I didn’t have to figure it out.

    However, I intuitively had misgivings about this phase. I had heard that the subtitling process performs anti-aliasing. That means that the image would need to be promoted to a higher colorspace for this phase and that the anti-aliasing process would likely push the color count way past 256. Some quick tests revealed this to be the case, as the running color count would leap by several hundred colors as soon as the palette accounting algorithm encountered a subtitle.

    So I dug into the subtitle subsystem. I discovered that the subtitle library operates by creating a linked list of subtitle bitmaps that the client app must render. The bitmaps are comprised of 8-bit alpha transparency values that must be composited onto the target frame (i.e., 0 = transparent, 255 = 100% opaque). For example, the letter ‘H’ :

                                      (with 00s removed)
    13 F8 41 00 00 00 00 68 E4  |  13 F8 41             68 E4    
    14 FF 44 00 00 00 00 6C EC  |  14 FF 44             6C EC
    14 FF 44 00 00 00 00 6C EC  |  14 FF 44             6C EC
    14 FF 44 00 00 00 00 6C EC  |  14 FF 44             6C EC
    14 FF DC D0 D0 D0 D0 E4 EC  |  14 FF DC D0 D0 D0 D0 E4 EC
    14 FF 7E 50 50 50 50 9A EC  |  14 FF 7E 50 50 50 50 9A EC
    14 FF 44 00 00 00 00 6C EC  |  14 FF 44             6C EC
    14 FF 44 00 00 00 00 6C EC  |  14 FF 44             6C EC
    14 FF 44 00 00 00 00 6C EC  |  14 FF 44             6C EC
    11 E0 3B 00 00 00 00 5E CE  |  11 E0 3B             5E CE
    

    To get around the color explosion problem, I chose a threshold value and quantized values above and below to 255 and 0, respectively. Further, the process chooses an appropriate color from the existing palette rather than introducing any new colors.

    Muxing Matters
    In order to force VMD into a general purpose media framework, a lot of special information needs to be passed around. Like many paletted codecs, the palette needs to be transmitted from the file demuxer to the video decoder via some side channel. For re-encoding, this also implies that the palette needs to make the trip from the video encoder to the file muxer. As if this wasn’t enough, individual VMD frames have even more data that needs to be ferried between the muxer and codec levels, including frame change boundaries. FFmpeg provides methods to do these things, but I could not always rely on the systems to relay the data in all cases. I was probably doing something wrong ; I accept that. Instead, I just packed all the information at the front of an encoded frame and split it apart in the muxer.

    I could not quite figure out how to get the audio and video muxed correctly. As a result, neither FFmpeg nor the Phantasmagoria engine could replay the files correctly.

    Plan B
    Since I was having so much trouble creating an entirely new VMD file, likely due to numerous unknown bits of the file format, I thought of another angle : re-use the existing VMD file. For this approach, I kept the video encoder and file muxer that I created in the initial phase, but modified the file muxer to emit a special intermediate file. Then, I created a Python tool to repackage the original VMD file using compressed video data in the intermediate file.

    For this phase, I also implemented a command line switch for FFmpeg to disable subtitle blending, to make the feature feel like less of an unofficial hack, as though this nonsense would ever have a chance of being incorporated upstream.

    At this point, I was seeing some success with the complete, albeit roundabout, subtitling process. I constructed a subtitle file using “Spanish I Learned From Mexican Telenovelas” and the frames turned out fairly readable :


    Le puso los cuernos a él

    “she cheated on him”


    es un desgraciado

    “he’s a scumbag” … these random subtitles could fit surprisingly well !


    The few files that I tested appeared to work fine. But then I handed off my work to The Translator and he immediately found a bunch of problems. According to my notes, the problems mostly took the form of flashing, solid color frames. Further, I found tiny, mostly imperceptible flaws in my RLE compressor, usually only detectable by running strict comparison tools ; but I wasn’t satisfied.

    At this point, I think I attempted to just encode the entire palette at the front of each frame, as allowed by the format, but that did not seem to fix any problems. My notes are not completely clear on this matter (likely because I was still trying to figure out the exact problem), but I think it had to do with FFmpeg inserting extra video frames in order to even out gaps in the video framerate.

    Sigh, Plan C
    At this point, I was getting tired of trying to force FFmpeg to do this. So I decided to minimize its involvement using lessons learned up to this point.

    The next pitch :

    1. Create a new C program that can open an existing VMD file and output an identical VMD file. I know this sounds easy, but the specific method of copying entails interpreting individual parts of the file and writing those individual parts to the new file. This is in preparation for…
    2. Import the VMD video decoder functions directly into the program to decode the individual video frames and re-encode them, replacing the video frames as the file is rewritten.
    3. Wire up the subtitle system. During the adventure to disable subtitle blending, I accidentally learned enough about interfacing to the subtitle library to just invoke it directly.
    4. Rewrite the RLE method so that it is 100% correct.

    Off to work I went. That part about lifting the existing VMD decoder functions out of their libavcodec nest turned out to not be that straightforward. As an alternative, I modified the decoder to dump the raw frames to an intermediate file. In doing so, I think I was able to avoid the issue of the duplicated frames that plagued the previous efforts.

    Also, remember how I was really pleased with the palette conversion technique in which I was able to leverage computer science big-O theory ? By this stage, I had no reason to convert the paletted video to RGB in the first place ; all of the decoding, subtitling and re-encoding operates in the paletted colorspace.

    This approach seemed to work pretty well. The final program is subtitle-vmd.c. The process is still a little weird. The modifications in my own FFmpeg fork are necessary to create an intermediate file that the new C tool can operate with.

    Next Steps
    The Translator has found some assorted bugs and corner cases that still need to be ironed out. Further, for extra credit, I need find the change windows for each frame to improve compression just a little more. I don’t think I will be trying for LZ compression, though.

    However, almost as soon as I had this whole system working, The Translator informed me that there is another, different movie format in play in the Phantasmagoria engine called ROBOT, with an extension of RBT. Fortunately, enough of the algorithms have been reverse engineered and re-implemented in ScummVM that I was able to sort out enough details for another subtitling project. That will be the subject of a future post.

    See Also :

  • Overthinking My Search Engine Problem

    31 décembre 2013, par Multimedia Mike — General

    I wrote a search engine for my Game Music Appreciation website, because the site would have been significantly less valuable without it (and I would eventually realize that the search feature is probably the most valuable part of this endeavor). I came up with a search solution that was a bit sketchy, but worked… until it didn’t. I thought of a fix but still searched for more robust and modern solutions (where ‘modern’ is defined as something that doesn’t require compiling a C program into a static CGI script and hoping that it works on a server I can’t debug on).

    Finally, I realized that I was overthinking the problem– did you know that a bunch of relational database management systems (RDBMSs) support full text search (FTS) ? Okay, maybe you did, but I didn’t know this.

    Problem Statement
    My goal is to enable users to search the metadata (title, composer, copyright, other tags) attached to various games. To do this, I want to index a series of contrived documents that describe the metadata. 2 examples of these contrived documents, interesting because both of these games have very different titles depending on region, something the search engine needs to account for :

    system : Nintendo NES
    game : Snoopy’s Silly Sports Spectacular
    author : None ; copyright : 1988 Kemco ; dumped by : None
    additional tags : Donald Duck.nsf Donald Duck
    

    system : Super Nintendo
    game : Arcana
    author : Jun Ishikawa, Hirokazu Ando ; copyright : 1992 HAL Laboratory ; dumped by : Datschge
    additional tags : card.rsn.gamemusic Card Master Cardmaster

    The index needs to map these documents to various pieces of game music and the search solution needs to efficiently search these documents and find the various game music entries that match a user’s request.

    Now that I’ve been looking at it for long enough, I’m able to express the problem surprisingly succinctly. If I had understood that much originally, this probably would have been simpler.

    First Solution & Breakage
    My original solution was based on SWISH-E. The CGI script was a C program that statically linked the SWISH-E library into a binary that miraculously ran on my web provider. At least, it ran until it decided to stop working a month ago when I added a new feature unrelated to search. It was a very bizarre problem, the details of which would probably bore you to tears. But if you care, the details are all there in the Stack Overflow question I asked on the matter.

    While no one could think of a direct answer to the problem, I eventually thought of a roundabout fix. The problem seemed to pertain to the static linking. Since I couldn’t count on the relevant SWISH-E library to be on my host’s system, I uploaded the shared library to the same directory as the CGI script and used dlopen()/dlsym() to fetch the functions I needed. It worked again, but I didn’t know for how long.

    Searching For A Hosted Solution
    I know that anything is possible in this day and age ; while my web host is fairly limited, there are lots of solutions for things like this and you can deploy any technology you want, and for reasonable prices. I figured that there must be a hosted solution out there.

    I have long wanted a compelling reason to really dive into Amazon Web Services (AWS) and this sounded like a good opportunity. After all, my script works well enough ; if I could just find a simple Linux box out there where I could install the SWISH-E library and compile the CGI script, I should be good to go. AWS has a free tier and I started investigating this approach. But it seems like a rabbit hole with a lot of moving pieces necessary for such a simple task.

    I had heard that AWS had something in this area. Sure enough, it’s called CloudSearch. However, I’m somewhat discouraged by the fact that it would cost me around $75 per month to run the smallest type of search instance which is at the core of the service.

    Finally, I came to another platform called Heroku. It’s supposed to be super-scalable while having a free tier for hobbyists. I started investigating FTS on Heroku and found this article which recommends using the FTS capabilities of their standard hosted PostgreSQL solution. However, the free tier of Postgres hosting only allows for 10,000 rows of data. Right now, my database has about 5400 rows. I expect it to easily overflow the 10,000 limit as soon as I incorporate the C64 SID music corpus.

    However, this Postgres approach planted a seed.

    RDBMS Revelation
    I have 2 RDBMSs available on my hosting plan– MySQL and SQLite (the former is a separate service while SQLite is built into PHP). I quickly learned that both have FTS capabilities. Since I like using SQLite so much, I elected to leverage its FTS functionality. And it’s just this simple :

    CREATE VIRTUAL TABLE gamemusic_metadata_fts USING fts3
    ( content TEXT, game_id INT, title TEXT ) ;
    

    SELECT id, title FROM gamemusic_metadata_fts WHERE content MATCH "arcana" ;
    479|Arcana

    The ‘content’ column gets the metadata pseudo-documents. The SQL gets wrapped up in a little PHP so that it queries this small database and turns the result into JSON. The script is then ready as a drop-in replacement for the previous script.

  • Stream frames of videos to server, compile, and download

    20 avril 2016, par Amol Patel

    I have an application that currently allows a user to upload a video and plays the gray-scaled version of the video side by side in real time. I want to be able to upload the gray-scaled video to a server frame by frame, compile the frames, and then allow the user to download the video. I have looked at various libraries such as ffserver, stream-encoder.js, node-video, etc. but have not been able to find something that does what I need. I plan on running ffmpeg on the server side to compile the frames

    Any tips or libraries I could use would be very helpful.

    Thanks