Recherche avancée

Médias (0)

Mot : - Tags -/organisation

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (66)

  • Les tâches Cron régulières de la ferme

    1er décembre 2010, par

    La gestion de la ferme passe par l’exécution à intervalle régulier de plusieurs tâches répétitives dites Cron.
    Le super Cron (gestion_mutu_super_cron)
    Cette tâche, planifiée chaque minute, a pour simple effet d’appeler le Cron de l’ensemble des instances de la mutualisation régulièrement. Couplée avec un Cron système sur le site central de la mutualisation, cela permet de simplement générer des visites régulières sur les différents sites et éviter que les tâches des sites peu visités soient trop (...)

  • Gestion générale des documents

    13 mai 2011, par

    MédiaSPIP ne modifie jamais le document original mis en ligne.
    Pour chaque document mis en ligne il effectue deux opérations successives : la création d’une version supplémentaire qui peut être facilement consultée en ligne tout en laissant l’original téléchargeable dans le cas où le document original ne peut être lu dans un navigateur Internet ; la récupération des métadonnées du document original pour illustrer textuellement le fichier ;
    Les tableaux ci-dessous expliquent ce que peut faire MédiaSPIP (...)

  • Gestion des droits de création et d’édition des objets

    8 février 2011, par

    Par défaut, beaucoup de fonctionnalités sont limitées aux administrateurs mais restent configurables indépendamment pour modifier leur statut minimal d’utilisation notamment : la rédaction de contenus sur le site modifiables dans la gestion des templates de formulaires ; l’ajout de notes aux articles ; l’ajout de légendes et d’annotations sur les images ;

Sur d’autres sites (4331)

  • Silent Audio In Concatenated MP4s (Python, FFMPEG)

    28 janvier, par John Coleman

    I am trying to solve an issue with concatenating several video files and ending up with silent audio for the whole generated video. Part of this is generating two videos, one title and one end screen, created from images, which I have added silence to. I then take these and add up to seven videos (with stereo audio, 48000hz). So, it ends up being Title + up to seven videos + end screen.

    


    I've added silence to the title/end screens, set the sample rate, channels, etc. but still no go. I still lose audio on the videos that should have audio (that originally did).

    


    Relevant code :

    


    Title Screen :

    


    (
            ffmpeg
            .input(thumbnail_path, loop=1, t=self.config.title_duration)
            .filter('fade', type='in', duration=self.config.fade_duration)
            .output(title_temp, vcodec='h264', acodec='aac', af='aevalsrc=0:d={}[aout]:s=48000:c=2'.format(self.config.title_duration))
            .overwrite_output()
            .run(capture_stdout=True, capture_stderr=True)
        )


    


    End Screen :

    


    (
            ffmpeg
            .input(end_screen_path, loop=1, t=self.config.end_screen_duration)
            .filter('fade', type='in', duration=self.config.fade_duration)
            .output(end_temp, vcodec='h264', acodec='aac', af='aevalsrc=0:d={}[aout]:s=48000:c=2'.format(self.config.end_screen_duration))
            .overwrite_output()
            .run(capture_stdout=True, capture_stderr=True)
        )


    


    Concatenate :

    


    (
            ffmpeg
            .input(concat_file, format='concat', safe=0)
            .output(output_path, c='copy')
            .overwrite_output()
            .run(capture_stdout=True, capture_stderr=True)
        )


    


    Any help with this would be SUPER appreciated. Thank you !

    


  • Introducing the BigQuery & Data Warehouse Export feature

    30 janvier, par Matomo Core Team

    Matomo is built on a simple truth : your data belongs to you, and you should have complete control over it. That’s why we’re excited to launch our new BigQuery & Data Warehouse Export feature for Matomo Cloud, giving you even more ways to work with your analytics data. 

    Until now, getting raw data from Matomo Cloud required APIs and custom scripts, or waiting for engineering help.  

    Our new BigQuery & Data Warehouse Export feature removes those barriers. You can now access your raw, unaggregated data and schedule regular exports straight to your data warehouse. 

    The feature works with all major data warehouses including (but not limited to) : 

    • Google BigQuery 
    • Amazon Redshift 
    • Snowflake 
    • Azure Synapse Analytics 
    • Apache Hive 
    • Teradata 

    You can schedule exports, combine your Matomo data with other data sources in your data warehouse, and easily query data with SQL-like queries. 

    Direct raw data access for greater data portability 

    Waiting for engineering support can delay your work. Managing API connections and writing scripts can be time-consuming. This keeps you from focusing on what you do best—analysing data. 

    BigQuery create-table-menu

    With the BigQuery & Data Warehouse Export feature, you get direct access to your raw Matomo data without the technical setup. So, you can spend more time analysing data and finding insights that matter. 

    Bringing your data together 

    Answering business questions often requires data from multiple sources. A single customer interaction might span your CRM, web analytics, sales systems, and more. Piecing this data together manually is time-consuming—what starts as a seemingly simple question from stakeholders can turn into hours of work collecting and comparing data across different tools. 

    This feature lets you combine your Matomo data with data from other business systems in your data warehouse. Instead of switching between tools or manually comparing spreadsheets, you can analyse all your data in one place to better understand how customers interact with your business. 

    Easy, custom analysis with SQL-like queries 

    Standard, pre-built reports often don’t address the specific, detailed questions that analysts need to answer.  

    When you use the BigQuery & Data Warehouse Export feature, you can use SQL-like queries in your data warehouse to do detailed, customised analysis. This flexibility allows you to explore your data in depth and uncover specific insights that aren’t possible with pre-built reports. 

    Here is an example of how you might use SQL-like query to compare the behaviours of paying vs. non-paying users : 

    				
                                            <xmp>SELECT  

    custom_dimension_value AS user_type, -- Assuming 'user_type' is stored in a custom dimension

    COUNT(*) AS total_visits,  

    AVG(visit_total_time) AS avg_duration,

    SUM(conversion.revenue) AS total_spent  

    FROM  

    `your_project.your_dataset.matomo_log_visit` AS visit

    LEFT JOIN  

    `your_project.your_dataset.matomo_log_conversion` AS conversion  

    ON  

    visit.idvisit = conversion.idvisit  

    GROUP BY  

    custom_dimension_value; </xmp>
                                   

    This query helps you compare metrics such as the number of visits, average session duration, and total amount spent between paying and non-paying users. It provides a full view of behavioural differences between these groups. 

    Advanced data manipulation and visualisation 

    When you need to create detailed reports or dive deep into data analysis, working within the constraints of a fixed user interface (UI) can limit your ability to draw insights. 

    Exporting your Matomo data to a data warehouse like BigQuery provides greater flexibility for in-depth manipulation and advanced visualisations, enabling you to uncover deeper insights and tailor your reports more effectively. 

    Getting started 

    To set up data warehouse exports in your Matomo : 

    1. Go to System Admin (cog icon in the top right corner) 
    2. Select ‘Export’ from the left-hand menu 
    3. Choose ‘BigQuery & Data Warehouse’ 

    You’ll find detailed instructions in our data warehouse exports guide 

    Please note, enabling this feature will cost an additional 10% of your current subscription. You can view the exact cost by following the steps above. 

    New to Matomo ? Start your 21-day free trial now (no credit card required), or request a demo. 

  • configure : update copyright year

    1er janvier, par Lynne
    configure : update copyright year
    

    On 01/01/2025 19:05, Peter Ross wrote :
    > FFmpeg turns 25 this year.

    • [DH] configure