Recherche avancée

Médias (91)

Autres articles (90)

  • Ajouter notes et légendes aux images

    7 février 2011, par

    Pour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
    Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
    Modification lors de l’ajout d’un média
    Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...)

  • Contribute to documentation

    13 avril 2011

    Documentation is vital to the development of improved technical capabilities.
    MediaSPIP welcomes documentation by users as well as developers - including : critique of existing features and functions articles contributed by developers, administrators, content producers and editors screenshots to illustrate the above translations of existing documentation into other languages
    To contribute, register to the project users’ mailing (...)

  • MediaSPIP v0.2

    21 juin 2013, par

    MediaSPIP 0.2 is the first MediaSPIP stable release.
    Its official release date is June 21, 2013 and is announced here.
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

Sur d’autres sites (4956)

  • lavfi/dnn_classify : add filter dnn_classify for classification based on detection...

    17 mars 2021, par Guo, Yejun
    lavfi/dnn_classify : add filter dnn_classify for classification based on detection bounding boxes
    

    classification is done on every detection bounding box in frame's side data,
    which are the results of object detection (filter dnn_detect).

    Please refer to commit log of dnn_detect for the material for detection,
    and see below for classification.

    - download material for classifcation :
    wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.bin
    wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.xml
    wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.label

    - run command as :
    ./ffmpeg -i cici.jpg -vf dnn_detect=dnn_backend=openvino:model=face-detection-adas-0001.xml:input=data:output=detection_out:confidence=0.6:labels=face-detection-adas-0001.label,dnn_classify=dnn_backend=openvino:model=emotions-recognition-retail-0003.xml:input=data:output=prob_emotion:confidence=0.3:labels=emotions-recognition-retail-0003.label:target=face,showinfo -f null -

    We'll see the detect&classify result as below :
    [Parsed_showinfo_2 @ 0x55b7d25e77c0] side data - detection bounding boxes :
    [Parsed_showinfo_2 @ 0x55b7d25e77c0] source : face-detection-adas-0001.xml, emotions-recognition-retail-0003.xml
    [Parsed_showinfo_2 @ 0x55b7d25e77c0] index : 0, region : (1005, 813) -> (1086, 905), label : face, confidence : 10000/10000.
    [Parsed_showinfo_2 @ 0x55b7d25e77c0] classify : label : happy, confidence : 6757/10000.
    [Parsed_showinfo_2 @ 0x55b7d25e77c0] index : 1, region : (888, 839) -> (967, 926), label : face, confidence : 6917/10000.
    [Parsed_showinfo_2 @ 0x55b7d25e77c0] classify : label : anger, confidence : 4320/10000.

    Signed-off-by : Guo, Yejun <yejun.guo@intel.com>

    • [DH] configure
    • [DH] doc/filters.texi
    • [DH] libavfilter/Makefile
    • [DH] libavfilter/allfilters.c
    • [DH] libavfilter/vf_dnn_classify.c
  • lavd/v4l2 : detect device name truncation

    25 novembre 2021, par Anton Khirnov
    lavd/v4l2 : detect device name truncation
    

    Silences the following warning with gcc 10 :
    src/libavdevice/v4l2.c : In function ‘v4l2_get_device_list’ :
    src/libavdevice/v4l2.c:1042:64 : warning : ‘%s’ directive output may be truncated writing up to 255 bytes into a region of size 251 [-Wformat-truncation=]
    1042 | ret = snprintf(device_name, sizeof(device_name), "/dev/%s", entry->d_name) ;
    | ^ 
    src/libavdevice/v4l2.c:1042:15 : note : ‘snprintf’ output between 6 and 261 bytes into a destination of size 256
    1042 | ret = snprintf(device_name, sizeof(device_name), "/dev/%s", entry->d_name) ;
    | ^ 

    Previous patches intending to silence it have proposed increasing the
    buffer size, but doing that correctly seems to be tricky. Failing on
    truncation is simpler and just as effective (as excessively long device
    names are unlikely).

    • [DH] libavdevice/v4l2.c
  • ffmpeg node js s3 stream screenshots qestion

    20 octobre 2015, par user3564443

    On my Node js server I need get video from s3, generate thumbnail for it, set thumbnail to s3, without saving video or thumbnail on my server. So I need to use streams for this. For thumbnail generation I use fluent-ffmpeg.

    Is it possible to get screenshots from streams using fluent-ffmpeg ?

    Is the correct way to intercept s3 getObject stream, that there was no need to download full video ?

    var config = require('../config');
    var AWS = require('aws-sdk');
    AWS.config.update({
     accessKeyId: config.AWS_accessKeyId,
     secretAccessKey: config.AWS_secretAccessKey,
     region: 'eu-west-1'
    });
    var s3 = new AWS.S3();
    var fs = require('fs');
    var ffmpeg = require('fluent-ffmpeg');

    exports.generateVideoThumbnail = function(fileId, url, done) {
     var params = {
       Bucket: config.AWS_bucket,
       Key: url
     };
     var input = s3.getObject(params);
     var stream = fs.createWriteStream('./screenshot.png');
     return ffmpeg(input).screenshots({
       timestamps: ['0.1', '0.2'],
       size: '200x200'
     }).output('./screenshot.png').output(stream).on('error', function(err) {
       return done(err);
     }).on('end', function() {
       input.close();
       var _key = "files/" + fileId + "/thumbnail.png";
       return s3.putObject({
         Bucket: config.AWS_bucket,
         Key: _key,
         Body: stream,
         ContentType: 'image/jpeg'
       }, function(err) {
         return done(err);
       });
     });
    };