Recherche avancée

Médias (1)

Mot : - Tags -/stallman

Autres articles (77)

  • Organiser par catégorie

    17 mai 2013, par

    Dans MédiaSPIP, une rubrique a 2 noms : catégorie et rubrique.
    Les différents documents stockés dans MédiaSPIP peuvent être rangés dans différentes catégories. On peut créer une catégorie en cliquant sur "publier une catégorie" dans le menu publier en haut à droite ( après authentification ). Une catégorie peut être rangée dans une autre catégorie aussi ce qui fait qu’on peut construire une arborescence de catégories.
    Lors de la publication prochaine d’un document, la nouvelle catégorie créée sera proposée (...)

  • Récupération d’informations sur le site maître à l’installation d’une instance

    26 novembre 2010, par

    Utilité
    Sur le site principal, une instance de mutualisation est définie par plusieurs choses : Les données dans la table spip_mutus ; Son logo ; Son auteur principal (id_admin dans la table spip_mutus correspondant à un id_auteur de la table spip_auteurs)qui sera le seul à pouvoir créer définitivement l’instance de mutualisation ;
    Il peut donc être tout à fait judicieux de vouloir récupérer certaines de ces informations afin de compléter l’installation d’une instance pour, par exemple : récupérer le (...)

  • Support de tous types de médias

    10 avril 2011

    Contrairement à beaucoup de logiciels et autres plate-formes modernes de partage de documents, MediaSPIP a l’ambition de gérer un maximum de formats de documents différents qu’ils soient de type : images (png, gif, jpg, bmp et autres...) ; audio (MP3, Ogg, Wav et autres...) ; vidéo (Avi, MP4, Ogv, mpg, mov, wmv et autres...) ; contenu textuel, code ou autres (open office, microsoft office (tableur, présentation), web (html, css), LaTeX, Google Earth) (...)

Sur d’autres sites (4699)

  • Things I Have Learned About Emscripten

    1er septembre 2015, par Multimedia Mike — Cirrus Retro

    3 years ago, I released my Game Music Appreciation project, a website with a ludicrously uninspired title which allowed users a relatively frictionless method to experience a range of specialized music files related to old video games. However, the site required use of a special Chrome plugin. Ever since that initial release, my #1 most requested feature has been for a pure JavaScript version of the music player.

    “Impossible !” I exclaimed. “There’s no way JS could ever run fast enough to run these CPU emulators and audio synthesizers in real time, and allow for the visualization that I demand !” Well, I’m pleased to report that I have proved me wrong. I recently quietly launched a new site with what I hope is a catchier title, meant to evoke a cloud-based retro-music-as-a-service product : Cirrus Retro. Right now, it’s basically the same as the old site, but without the wonky Chrome-specific technology.

    Along the way, I’ve learned a few things about using Emscripten that I thought might be useful to share with other people who wish to embark on a similar journey. This is geared more towards someone who has a stronger low-level background (such as C/C++) vs. high-level (like JavaScript).

    General Goals
    Do you want to cross-compile an entire desktop application, one that relies on an extensive GUI toolkit ? That might be difficult (though I believe there is a path for porting qt code directly with Emscripten). Your better wager might be to abstract out the core logic and processes of the program and then create a new web UI to access them.

    Do you want to compile a game that basically just paints stuff to a 2D canvas ? You’re in luck ! Emscripten has a porting path for SDL. Make a version of your C/C++ software that targets SDL (generally not a tall order) and then compile that with Emscripten.

    Do you just want to cross-compile some functionality that lives in a library ? That’s what I’ve done with the Cirrus Retro project. For this, plan to compile the library into a JS file that exports some public functions that other, higher-level, native JS (i.e., JS written by a human and not a computer) will invoke.

    Memory Levels
    When porting C/C++ software to JavaScript using Emscripten, you have to think on 2 different levels. Or perhaps you need to force JavaScript into a low level C lens, especially if you want to write native JS code that will interact with Emscripten-compiled code. This often means somehow allocating chunks of memory via JS and passing them to the Emscripten-compiled functions. And you wouldn’t believe the type of gymnastics you need to execute to get native JS and Emscripten-compiled JS to cooperate.

    “Emscripten : Pointers and Pointers” is the best (and, really, ONLY) explanation I could find for understanding the basic mechanics of this process, at least when I started this journey. However, there’s a mistake in the explanation that left me confused for a little while, and I’m at a loss to contact the author (doesn’t anyone post a simple email address anymore ?).

    Per the best of my understanding, Emscripten allocates a large JS array and calls that the memory space that the compiled C/C++ code is allowed to operate in. A pointer in C/C++ code will just be an index into that mighty array. Really, that’s not too far off from how a low-level program process is supposed to view memory– as a flat array.

    Eventually, I just learned to cargo-cult my way through the memory allocation process. Here’s the JS code for allocating an Emscripten-compatible byte buffer, taken from my test harness (more on that later) :

    var musicBuffer = fs.readFileSync(testSpec[’filename’]) ;
    var musicBufferBytes = new Uint8Array(musicBuffer) ;
    var bytesMalloc = player._malloc(musicBufferBytes.length) ;
    var bytes = new Uint8Array(player.HEAPU8.buffer, bytesMalloc, musicBufferBytes.length) ;
    bytes.set(new Uint8Array(musicBufferBytes.buffer)) ;
    

    So, read the array of bytes from some input source, create a Uint8Array from the bytes, use the Emscripten _malloc() function to allocate enough bytes from the Emscripten memory array for the input bytes, then create a new array… then copy the bytes…

    You know what ? It’s late and I can’t remember how it works exactly, but it does. It has been a few months since I touched that code (been fighting with front-end website tech since then). You write that memory allocation code enough times and it begins to make sense, and then you hope you don’t have to write it too many more times.

    Multithreading
    You can’t port multithreaded code to JS via Emscripten. JavaScript has no notion of threads ! If you don’t understand the computer science behind this limitation, a more thorough explanation is beyond the scope of this post. But trust me, I’ve thought about it a lot. In fact, the official Emscripten literature states that you should be able to port most any C/C++ code as long as 1) none of the code is proprietary (i.e., all the raw source is available) ; and 2) there are no threads.

    Yes, I read about the experimental pthreads support added to Emscripten recently. Don’t get too excited ; that won’t be ready and widespread for a long time to come as it relies on a new browser API. In the meantime, figure out how to make your multithreaded C/C++ code run in a single thread if you want it to run in a browser.

    Printing Facility
    Eventually, getting software to work boils down to debugging, and the most primitive tool in many a programmer’s toolbox is the humble print statement. A print statement allows you to inspect a piece of a program’s state at key junctures. Eventually, when you try to cross-compile C/C++ code to JS using Emscripten, something is not going to work correctly in the generated JS “object code” and you need to understand what. You’ll be pleading for a method of just inspecting one variable deep in the original C/C++ code.

    I came up with this simple printf-workalike called emprintf() :

    #ifndef EMPRINTF_H
    #define EMPRINTF_H
    

    #include <stdio .h>
    #include <stdarg .h>
    #include <emscripten .h>

    #define MAX_MSG_LEN 1000

    /* NOTE : Don’t pass format strings that contain single quote (’) or newline
    * characters. */
    static void emprintf(const char *format, ...)

    char msg[MAX_MSG_LEN] ;
    char consoleMsg[MAX_MSG_LEN + 16] ;
    va_list args ;

    /* create the string */
    va_start(args, format) ;
    vsnprintf(msg, MAX_MSG_LEN, format, args) ;
    va_end(args) ;

    /* wrap the string in a console.log(’’) statement */
    snprintf(consoleMsg, MAX_MSG_LEN + 16, "console.log(’%s’)", msg) ;

    /* send the final string to the JavaScript console */
    emscripten_run_script(consoleMsg) ;

    #endif /* EMPRINTF_H */

    Put it in a file called “emprint.h”. Include it into any C/C++ file where you need debugging visibility, use emprintf() as a replacement for printf() and the output will magically show up on the browser’s JavaScript debug console. Heed the comments and don’t put any single quotes or newlines in strings, and keep it under 1000 characters. I didn’t say it was perfect, but it has helped me a lot in my Emscripten adventures.

    Optimization Levels
    Remember to turn on optimization when compiling. I have empirically found that optimizing for size (-Os) leads to the best performance all around, in addition to having the smallest size. Just be sure to specify some optimization level. If you don’t, the default is -O0 which offers horrible performance when running in JS.

    Static Compression For HTTP Delivery
    JavaScript code compresses pretty efficiently, even after it has been optimized for size using -Os. I routinely see compression ratios between 3.5:1 and 5:1 using gzip.

    Web servers in this day and age are supposed to be smart enough to detect when a requesting web browser can accept gzip-compressed data and do the compression on the fly. They’re even supposed to be smart enough to cache compressed output so the same content is not recompressed for each request. I would have to set up a series of tests to establish whether either of the foregoing assertions are correct and I can’t be bothered. Instead, I took it into my own hands. The trick is to pre-compress the JS files and then instruct the webserver to serve these files with a ‘Content-Type’ of ‘application/javascript’ and a ‘Content-Encoding’ of ‘gzip’.

    1. Compress your large Emscripten-build JS files with ‘gzip’ : ‘gzip compiled-code.js’
    2. Rename them from extension .js.gz to .jsgz
    3. Tell the webserver to deliver .jsgz files with the correct Content-Type and Content-Encoding headers

    To do that last step with Apache, specify these lines :

    AddType application/javascript jsgz
    AddEncoding gzip jsgz
    

    They belong in either a directory’s .htaccess file or in the sitewide configuration (/etc/apache2/mods-available/mime.conf works on my setup).

    Build System and Build Time Optimization
    Oh goodie, build systems ! I had a very specific manner in which I wanted to build my JS modules using Emscripten. Can I possibly coerce any of the many popular build systems to do this ? It has been a few months since I worked on this problem specifically but I seem to recall that the build systems I tried to used would freak out at the prospect of compiling stuff to a final binary target of .js.

    I had high hopes for Bazel, which Google released while I was developing Cirrus Retro. Surely, this is software that has been battle-tested in the harshest conditions of one of the most prominent software-developing companies in the world, needing to take into account the most bizarre corner cases and still build efficiently and correctly every time. And I have little doubt that it fulfills the order. Similarly, I’m confident that Google also has a team of no fewer than 100 or so people dedicated to developing and supporting the project within the organization. When you only have, at best, 1-2 hours per night to work on projects like this, you prefer not to fight with such cutting edge technology and after losing 2 or 3 nights trying to make a go of Bazel, I eventually put it aside.

    I also tried to use Autotools. It failed horribly for me, mostly for my own carelessness and lack of early-project source control.

    After that, it was strictly vanilla makefiles with no real dependency management. But you know what helps in these cases ? ccache ! Or at least, it would if it didn’t fail with Emscripten.

    Quick tip : ccache has trouble with LLVM unless you set the CCACHE_CPP2 environment variable (e.g. : “export CCACHE_CPP2=1”). I don’t remember the specifics, but it magically fixes things. Then, the lazy build process becomes “make clean && make”.

    Testing
    If you have never used Node.js, testing Emscripten-compiled JS code might be a good opportunity to start. I was able to use Node.js to great effect for testing the individually-compiled music player modules, wiring up a series of invocations using Python for a broader test suite (wouldn’t want to go too deep down the JS rabbit hole, after all).

    Be advised that Node.js doesn’t enjoy the same kind of JIT optimizations that the browser engines leverage. Thus, in the case of time critical code like, say, an audio synthesis library, the code might not run in real time. But as long as it produces the correct bitwise waveform, that’s good enough for continuous integration.

    Also, if you have largely been a low-level programmer for your whole career and are generally unfamiliar with the world of single-threaded, event-driven, callback-oriented programming, you might be in for a bit of a shock. When I wanted to learn how to read the contents of a file in Node.js, this is the first tutorial I found on the matter. I thought the code presented was a parody of bad coding style :

    var fs = require("fs") ;
    var fileName = "foo.txt" ;
    

    fs.exists(fileName, function(exists)
    if (exists)
    fs.stat(fileName, function(error, stats)
    fs.open(fileName, "r", function(error, fd)
    var buffer = new Buffer(stats.size) ;

    fs.read(fd, buffer, 0, buffer.length, null, function(error, bytesRead, buffer)
    var data = buffer.toString("utf8", 0, buffer.length) ;

    console.log(data) ;
    fs.close(fd) ;
    ) ;
    ) ;
    ) ;
    ) ;

    Apparently, this kind of thing doesn’t raise an eyebrow in the JS world.

    Now, I understand and respect the JS programming model. But this was seriously frustrating when I first encountered it because a simple script like the one I was trying to write just has an ordered list of tasks to complete. When it asks for bytes from a file, it really has nothing better to do than to wait for the answer.

    Thankfully, it turns out that Node’s fs module includes synchronous versions of the various file access functions. So it’s all good.

    Conclusion
    I’m sure I missed or underexplained some things. But if other brave souls are interested in dipping their toes in the waters of Emscripten, I hope these tips will come in handy.

    The post Things I Have Learned About Emscripten first appeared on Breaking Eggs And Making Omelettes.

  • Decoding VP8 On A Sega Dreamcast

    20 février 2011, par Multimedia Mike — Sega Dreamcast, VP8

    I got Google’s libvpx VP8 codec library to compile and run on the Sega Dreamcast with its Hitachi/Renesas SH-4 200 MHz CPU. So give Google/On2 their due credit for writing portable software. I’m not sure how best to illustrate this so please accept this still photo depicting my testbench Dreamcast console driving video to my monitor :



    Why ? Because I wanted to try my hand at porting some existing software to this console and because I tend to be most comfortable working with assorted multimedia software components. This seemed like it would be a good exercise.

    You may have observed that the video is blue. Shortest, simplest answer : Pure laziness. Short, technical answer : Path of least resistance for getting through this exercise. Longer answer follows.

    Update : I did eventually realize that the Dreamcast can work with YUV textures. Read more in my followup post.

    Process and Pitfalls
    libvpx comes with a number of little utilities including decode_to_md5.c. The first order of business was porting over enough source files to make the VP8 decoder compile along with the MD5 testbench utility.

    Again, I used the KallistiOS (KOS) console RTOS (aside : I’m still working to get modern Linux kernels compiled for the Dreamcast). I started by configuring and compiling libvpx on a regular desktop Linux system. From there, I was able to modify a number of configuration options to make the build more amenable to the embedded RTOS.

    I had to create a few shim header files that mapped various functions related to threading and synchronization to their KOS equivalents. For example, KOS has a threading library cleverly named kthreads which is mostly compatible with the more common pthread library functions. KOS apparently also predates stdint.h, so I had to contrive a file with those basic types.

    So I got everything compiled and then uploaded the binary along with a small VP8 IVF test vector. Imagine my surprise when an MD5 sum came out of the serial console. Further, visualize my utter speechlessness when I noticed that the MD5 sum matched what my desktop platform produced. It worked !

    Almost. When I tried to decode all frames in a test vector, the program would invariably crash. The problem was that the file that manages motion compensation (reconinter.c) needs to define MUST_BE_ALIGNED which compiles byte-wise block copy functions. This is necessary for CPUs like the SH-4 which can’t load unaligned data. Apparently, even ARM CPUs these days can handle unaligned memory accesses which is why this isn’t a configure-time option.

    Showing The Work
    I completed the first testbench application which ran the MD5 test on all 17 official IVF test vectors. The SH-4/Dreamcast version aces the whole suite.

    However, this is a video game console, so I had better be able to show the decoded video. The Dreamcast is strictly RGB— forget about displaying YUV data directly. I could take the performance hit to convert YUV -> RGB. Or, I could just display the intensity information (Y plane) rendered on a random color scale (I chose blue) on an RGB565 texture (the DC’s graphics hardware can also do paletted textures but those need to be rearranged/twiddled/swizzled).

    Results
    So, can the Dreamcast decode VP8 video in realtime ? Sure ! Well, I really need to qualify. In the test depicted in the picture, it seems to be realtime (though I wasn’t enforcing proper frame timings, just decoding and displaying as quickly as possible). Obviously, I wasn’t bothering to properly convert YUV -> RGB. Plus, that Big Buck Bunny test vector clip is only 176x144. Obviously, no audio decoding either.

    So, realtime playback, with a little fine print.

    On the plus side, it’s trivial to get the Dreamcast video hardware to upscale that little blue image to fullscreen.

    I was able to tally the total milliseconds’ worth of wall clock time required to decode the 17 VP8 test vectors. As you can probably work out from this list, when I try to play a 320x240 video, things start to break down.

    1. Processed 29 176x144 frames in 987 milliseconds.
    2. Processed 49 176x144 frames in 1809 milliseconds.
    3. Processed 49 176x144 frames in 704 milliseconds.
    4. Processed 29 176x144 frames in 255 milliseconds.
    5. Processed 49 176x144 frames in 339 milliseconds.
    6. Processed 48 175x143 frames in 2446 milliseconds.
    7. Processed 29 176x144 frames in 432 milliseconds.
    8. Processed 2 1432x888 frames in 2060 milliseconds.
    9. Processed 49 176x144 frames in 1884 milliseconds.
    10. Processed 57 320x240 frames in 5792 milliseconds.
    11. Processed 29 176x144 frames in 989 milliseconds.
    12. Processed 29 176x144 frames in 740 milliseconds.
    13. Processed 29 176x144 frames in 839 milliseconds.
    14. Processed 49 175x143 frames in 2849 milliseconds.
    15. Processed 260 320x240 frames in 29719 milliseconds.
    16. Processed 29 176x144 frames in 962 milliseconds.
    17. Processed 29 176x144 frames in 933 milliseconds.
  • Running Windows XP In 2016

    2 janvier 2016, par Multimedia Mike

    I have an interest in getting a 32-bit Windows XP machine up and running. I have a really good yet slightly dated and discarded computer that seemed like a good candidate for dedicating to this task. So the question is : Can Windows XP still be installed from scratch on a computer, activated, and used in 2016 ? I wasn’t quite sure since I have heard stories about how Microsoft has formally ended support for Windows XP as of the first half of 2014 and I wasn’t entirely sure what that meant.

    Spoiler : It’s still possible to install and activate Windows XP as of the writing of this post. It’s also possible to download and install all the updates published up until support ended.

    The Candidate Computer
    This computer was assembled either in late 2008 or early 2009. It was a beast at the time.


    New old Windows XP computer
    Click for a larger image

    It was built around the newly-released NVIDIA GTX 280 video card. The case is a Thermaltake DH-101, which is a home theater PC thing. The motherboard is an Asus P5N32-SLI Premium with a Core 2 Duo X6800 2.93 GHz CPU on board. 2 GB of RAM and a 1.5 TB hard drive are also present.

    The original owner handed it off to me because their family didn’t have much use for it anymore (too many other machines in the house). Plus it was really, obnoxiously loud. The noisy culprit was the stock blue fan that came packaged with the Intel processor (seen in the photo) whining at around 65 dB. I replaced the fan and brought the noise level way down.

    As for connectivity, the motherboard has dual gigabit NICs (of 2 different chipsets for some reason) and onboard wireless 802.11g. I couldn’t make the latter work and this project was taking place a significant distance from my wired network. Instead, I connected a USB 802.11ac dongle and antenna which is advertised to work in both Windows XP and Linux. It works great under Windows XP. Meanwhile, making the adapter work under Linux provided a retro-computing adventure in which I had to modify C code to make the driver work.

    So, score 1 for Windows XP over Linux here.

    The Simple Joy of Retro-computing
    One thing you have to watch out for when you get into retro-computing is fighting the urge to rant about the good old days of computing. Most long-time computer users have a good understanding of the frustration that computers keep getting faster by orders of magnitude and yet using them somehow feels slower and slower over successive software generations.

    This really hits home when you get old software running, especially on high-end hardware (relative to what was standard contemporary hardware). After I got this new Windows XP machine running, as usual, I was left wondering why software was so much faster a few generations ago.

    Of course, as mentioned, it helps when you get to run old software on hardware that would have been unthinkably high end at the software’s release. Apparently, the minimum WinXP specs as set by MS are a 233 MHz Pentium CPU and 64 MB of RAM, with 1.5 GB of hard drive space. This machine has more than 10x the clock speed (and 2 CPUs), 32x the RAM, and 1000x the HD space. Further, I’m pretty sure 100 Mbit ethernet was the standard consumer gear in 2001 while 802.11b wireless was gaining traction. The 802.11ac adapter makes networking quite pleasant.

    Purpose
    Retro-computing really seems to be ramping up in popularity lately. For some reason, I feel compelled to declare at this juncture that I was into it before it was cool.

    Why am I doing this ? I have a huge collection of old DOS/Windows computer games. I also have this nerdy obsession with documenting old video games in the MobyGames database. I used to do a lot of this a few years ago, tracking the effort on my gaming blog. In the intervening years, I have still collected a lot of old, unused, unloved video games, usually either free or very cheap while documenting my collection efforts on that same blog.

    So I want to work my way through some of this backlog, particularly the games that are not yet represented in the MobyGames database, and even more pressing, ones that the internet (viewed through Google at least) does not seem to know about. To that end, I thought this was a good excuse to get Windows XP on this old machine. A 32-bit Windows XP machine is capable of running any software advertised as supporting Windows XP, Windows ME, Windows 98, Windows 95, and even 16-bit Windows 3.x (I have games for all these systems). That covers a significant chunk of PC history. It can probably be made to run DOS games as well, but those are (usually) better run under DosBox. In order to get the right display feel, I even invested in a (used) monitor sporting a 4:3 aspect ratio. If I know these old games, most will be engineered and optimized for that ratio rather than the widescreen resolutions seen nowadays.

    I would also like to get back to that Xbox optical disc experimentation I was working on a few years ago. Another nice feature of this motherboard is that it still provides a 40-pin IDE/PATA adapter which makes the machine useful for continuing that old investigation (and explains why I have that long IDE cable to no where pictured hanging off the board).

    The Messy Details
    I did the entire installation process twice. The first time was a bumbling journey of discovery and copious note-taking. I still have Windows XP installation media that includes service pack 2 (SP2), along with 2 separate licenses that haven’t been activated for a long time. My plan was to install it fresh, then install the relevant drivers. Then I would investigate the Windows update and activation issues and everything should be fine.

    So what’s the deal with Windows Update for XP, and with activations ? Second item first : it IS possible to still activate Windows XP. The servers are still alive and respond quickly. However, as always, you don’t activate until you’re sure everything is working at some baseline. It took awhile to get there.

    As for whether Windows Update still works for XP, that’s a tougher question. Short answer is yes ; longer answer is that it can be difficult to kick off the update process. At least on SP2, the “Windows Update” program launches IE6 and navigates to a special microsoft.com URL which initiates the update process (starting with an ActiveX control). This URL no longer exists.

    From what I can piece together from my notes, this seems to be the route I eventually took :

    1. Install Windows XP fresh
    2. Install drivers for the hardware ; fortunately, Asus still has all the latest drivers necessary for the motherboard and its components but it’s necessary to download these from another network-connected PC since the networking probably won’t be running “out of the box”
    3. Download the .NET 3.5 runtime, which is the last one supported by Windows XP, and install it
    4. Download the latest NVIDIA drivers ; this needs to be done after the previous step because the installer requires the .NET runtime ; run the driver installer and don’t try to understand why it insists on re-downloading .NET 3.5 runtime before installation
    5. While you’re downloading stuff on other computers to be transported to this new machine, be sure to download either Chrome or Firefox per your preference ; if you try to download via IE6, you may find that their download pages aren’t compatible with IE6
    6. Somewhere along the line (I’m guessing as a side effect of the .NET 3.5 installation), the proper, non-IE6-based Windows Update program magically springs to life ; once this happens, there will be 144 updates (in my case anyway) ; installing these will probably require multiple reboots, but SP3 and all known pre-deprecation security fixes will be installed
    7. Expect that, even after installing all of these, a few more updates will appear ; eventually, you’ll be at the end of the update road
    8. Once you’re satisfied everything is working satisfactorily, take the plunge and activate your installation

    Residual Quirks
    Steam runs great on Windows XP, as do numerous games I have purchased through the service. So that opens up a whole bunch more games that I could play on this machine. Steam’s installer highlights a curious legacy problem of Windows XP– it seems there are many languages that it does not support “out of the box” :


    Steam missing languages under Windows XP

    It looks like the Chinese options and a few others that are standard now weren’t standard 15 years ago.

    Also, a little while after booting up, I’ll get a crashing error concerning a process called geoforms.scr. This appears to be NVIDIA-related. However, I don’t notice anything obviously operationally wrong with the system.

    Regarding DirectX support, DirectX 9 is the highest version officially supported by Windows XP. There are allegedly methods to get DirectX 10 running as well, but I don’t care that much. I did care, briefly, when I realized that a bunch of the demos for the NVIDIA GTX 280 required DX10 which left me wondering why it was possible to install them on Windows XP.

    Eventually, by installing enough of these old games, I fully expect to have numerous versions of .NET, DirectX, QT, and Video for Windows installed side by side.

    Out of curiosity, I tried playing a YouTube HD/1080p video. I wanted to see if the video was accelerated through my card. The video played at full speed but I noticed some tearing. Then I inspected the CPU usage and noticed that the CPU was quite loaded. So either the GTX 280 doesn’t have video acceleration, or Windows XP doesn’t provide the right APIs, or Chrome is not able to access the APIs in Windows XP, or perhaps some combination of the foregoing.

    Games are working well, though. I tried one of my favorite casual games and got sucked into that for, like, an entire night because that’s what casual games do. But then, I booted up a copy of WarCraft III that I procured sometime ago. I don’t have any experience with the WarCraft universe (RTS or MMO) but I developed a keen interest in StarCraft II over the past few years and wanted to try WarCraft III. Unfortunately, I couldn’t get WarCraft III to work correctly on several different Windows 7 installations (movies didn’t play, which left me slightly confused as to what I was supposed to do).

    Still works beautifully on the new old Windows XP machine.

    The post Running Windows XP In 2016 first appeared on Breaking Eggs And Making Omelettes.