Recherche avancée

Médias (0)

Mot : - Tags -/optimisation

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (63)

  • Soumettre améliorations et plugins supplémentaires

    10 avril 2011

    Si vous avez développé une nouvelle extension permettant d’ajouter une ou plusieurs fonctionnalités utiles à MediaSPIP, faites le nous savoir et son intégration dans la distribution officielle sera envisagée.
    Vous pouvez utiliser la liste de discussion de développement afin de le faire savoir ou demander de l’aide quant à la réalisation de ce plugin. MediaSPIP étant basé sur SPIP, il est également possible d’utiliser le liste de discussion SPIP-zone de SPIP pour (...)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

  • Emballe médias : à quoi cela sert ?

    4 février 2011, par

    Ce plugin vise à gérer des sites de mise en ligne de documents de tous types.
    Il crée des "médias", à savoir : un "média" est un article au sens SPIP créé automatiquement lors du téléversement d’un document qu’il soit audio, vidéo, image ou textuel ; un seul document ne peut être lié à un article dit "média" ;

Sur d’autres sites (4544)

  • A Beginner’s Guide to Omnichannel Analytics

    14 avril 2024, par Erin

    Linear customer journeys are as obsolete as dial-up internet and floppy disks. As a marketing manager, you know better than anyone that customers interact with your brand hundreds of times across dozens of channels before purchasing. That can make tracking them a nightmare unless you build an omnichannel analytics solution. 

    Alas, if only it were that simple. 

    Unfortunately, it’s not enough to collect data on your customers’ complex journeys just by buying an omnichannel platform. You need to generate actionable insights by using marketing attribution to tie channels to conversions. 

    This article will explain how to build a useful omnichannel analytics solution that lets you understand and improve the customer journey.

    What is omnichannel analytics ?

    Omnichannel analytics collects and analyses customer data from every touchpoint and device. The goal is to collect all this omnichannel data in one place, creating a single, real-time, unified view of your customer’s journey.

    What is omnichannel analytics

    Unfortunately, most businesses haven’t achieved this yet. As Karen Lellouche Tordjman and Marco Bertini say :

    “Despite all the buzz around the concept of omnichannel, most companies still view customer journeys as a linear sequence of standardised touchpoints within a given channel. But the future of customer engagement transforms touchpoints from nodes along a predefined distribution path to full-blown portals that can serve as points of sale or pathways to many other digital and virtual interactions. They link to chatbots, kiosks, robo-advisors, and other tools that customers — especially younger ones — want to engage with.”

    However, doing so is more important than ever — especially when consumers have over 300 digital touchpoints, and the average number of touchpoints in the B2B buyer journey is 27.

    Not only that, but customers expect personalised experiences across every platform — that’s the kind you can only create when you have access to omnichannel data.

    A diagram showing how complex customer journeys are

    What might omnichannel analytics look like in practice for an e-commerce store ?

    An online store would integrate data from channels like its website, mobile app, social media accounts, Google Ads and customer service records. This would show how customers find its brand, how they use each channel to interact with it and which channels convert the most customers. 

    This would allow the e-commerce store to tailor marketing channels to customers’ needs. For instance, they could focus social media use on product discovery and customer support. Google Ads campaigns could target the best-converting products. While all this is happening, the store could also ensure every channel looks the same and delivers the same experience. 

    What are the benefits of omnichannel analytics ?

    Why go to all the trouble of creating a comprehensive view of the customer’s experience ? Because you stand to gain some pretty significant benefits when implementing omnichannel analytics.

    What are the benefits of omnichannel analytics?

    Understand the customer journey

    You want to understand how your customers behave, right ? No other method will allow you to fully understand your customer journey the way omnichannel analytics does. 

    It doesn’t matter how customers engage with your brand — whether that’s your website, app, social media profiles or physical stores — omnichannel analytics capture every interaction.

    With this 360-degree view of your customers, it’s easy to understand how they move between channels, where they encounter issues and what bottlenecks prevent them from converting. 

    Deliver better personalisation

    We don’t have to tell you that personalisation matters. But do you know just how important it is ? Since 56% of customers will become repeat buyers after a personalised experience, delivering them as often as possible is critical. 

    Omnichannel analytics helps in your quest for personalisation by highlighting the individual preferences of customer segments. For example, e-commerce stores can use omnichannel analytics to understand how shoppers behave across different devices and tailor their offers accordingly. 

    Upgrade the customer experience

    Omnichannel analytics gives you the insights to improve every aspect of the customer experience. 

    For starters, you can ensure a consistent brand experience across all your top channels by making sure they look and behave the same.

    Then, you can use omnichannel insights to tailor each channel to your customers’ requirements. For example, most people interacting with your brand on social media may seek support. Knowing that you can create dedicated support accounts to assist users. 

    Improve marketing campaigns

    Which marketing campaigns or traffic sources convert the most customers ? How can you improve these campaigns ? Omnichannel analytics has the answers. 

    When you implement omnichannel analytics you automatically track the performance of every marketing channel by attributing each conversion to one or more traffic sources. This lets you see whether Google Ads bring in more customers than your SEO efforts. Or whether social media ads are the most profitable acquisition channel. 

    Armed with this information, you can improve your marketing efforts — either by focusing on your profitable channels or rectifying problems that stop less profitable channels from converting.

    What are the challenges of omnichannel analytics ?

    There are three challenges when implementing an omnichannel analytics solution :

    What are the challenges of omnichannel analytics?
    • Complex customer journeys : Customer journeys aren’t linear and can be incredibly difficult to track. 
    • Regulatory and privacy issues : When you start gathering customer data, you quickly come up against consumer privacy laws. 
    • No underlying goal : There has to be a reason to go to all this effort, but brands don’t always have goals in mind before they start. 

    You can’t do anything about the first challenge. 

    After all, your customer journey will almost never be linear. And isn’t the point of implementing an omnichannel solution to understand these complex journeys in the first place ? Once you set up omnichannel analytics, these journeys will be much easier to decipher. 

    As for the other two :

    Using the right software that respects user privacy and complies with all major privacy laws will avoid regulatory issues. Take Matomo, for instance. Our software was designed with privacy in mind and is configured to follow the strictest privacy laws, such as GDPR. 

    Tying omnichannel analytics to marketing attribution will solve the final challenge by giving your omnichannel efforts a goal. When you tie omnichannel analytics to your marketing efforts, you aren’t just getting a 360-degree view of your customer journey for the sake of it. You are getting that view to improve your marketing efforts and increase sales.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    How to set up an omnichannel analytics solution

    Want to set up a seamless analytical environment that incorporates data from every possible source ? Follow these five steps :

    Choose one or more analytics providers

    You can use several tools to build an omnichannel analytics solution. These include web and app analytics tools, customer data platforms that centralise first-party data and business intelligence tools (typically used for visualisation). 

    Which tools you use will depend on your goals and your budget — the loftier your ambitions and the higher your budget, the more tools you can use. 

    Ideally, you should use as few tools as possible to capture your data. Most teams won’t need business intelligence platforms, for example. However, you may or may not need both an analytics platform and a customer data platform. Your decision will depend on how many channels your customers use and how well your analytics tool tracks everything.

    If it can capture web and app usage while integrating with third-party platforms like your back-end e-commerce platform, then it’s probably enough.

    Collect accurate data at every touchpoint 

    Your omnichannel analytics efforts hinge on the quantity and quality of data you can collect. You want to gather data from every touchpoint possible and store that data in as few places as possible. That’s why choosing as few tools as possible in the step above is so important. 

    So, where should you start ? Common data sources include :

    • Your website
    • Apps (iOS and Android)
    • Social media profiles
    • ERPs
    • PoS systems

    At the same time, make sure you’re tracking all relevant metrics. Revenue, customer engagement and conversion-focused metrics like conversion rate, dwell time, cart abandonment rate and churn rate are particularly important. 

    Set up marketing attribution

    Setting up marketing attribution (also known as multi-touch attribution) is essential to tie omnichannel data to business goals. It’s the only way to know exactly how valuable each marketing channel is and where each customer comes from. 

    You’ll want to use multi-touch attribution, given you have data from across the customer journey.

    Image of six different attribution models

    Multi-touch attribution models can include (but are not limited to) :

    • Linear : where each touchpoint is given equal weighting
    • Time decay : where touchpoints are more valuable the nearer they are to conversion
    • Position-based : where the first and last touch points are more valuable than all the others. 

    You don’t have to use just one of the models above, however. One of the benefits of using a web analytics tool like Matomo is that you can choose between different attribution models and compare them.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Create reports that help you visualise data

    Dashboards are your friend here. They’ll let you see KPIs at a glance, allowing you to keep track of day-to-day changes in your customer journey. Ideally, you’ll want a platform that lets you customise dashboard widgets so only relevant KPIs are shown. 

    A custom graph created in Matomo

    Setting up standard and custom reports is also important. Custom reports allow you to choose metrics and dimensions that align with your goals. They will also allow you to present your data most meaningfully to your team, increasing the likelihood they act upon insights. 

    Analyse data and take action

    Now that you have customer journey data at your fingertips, it’s time to analyse it. After all, there’s no point in implementing an omnichannel analytics solution if you aren’t going to take action. 

    If you’re unsure where to start, re-read the benefits we listed at the start of this article. You could use your omnichannel insights to improve your marketing campaigns by doubling down on the channels that bring in the best customers.

    Or you could identify (and fix) bottlenecks in the customer journey so customers are less likely to fall out of your funnel between certain channels. 

    Just make sure you take action based on your data alone.

    Make the most of omnichannel analytics with Matomo

    A comprehensive web and app analytics platform is vital to any omnichannel analytics strategy. 

    But not just any solution will do. When privacy regulations impede an omnichannel analytics solution, you need a platform to capture accurate data without breaking privacy laws or your users’ trust. 

    That’s where Matomo comes in. Our privacy-friendly web analytics platform ensures accurate tracking of web traffic while keeping you compliant with even the strictest regulations. Moreover, our range of APIs and SDKs makes it easy to track interactions from all your digital products (website, apps, e-commerce back-ends, etc.) in one place. 

    Try Matomo for free for 21 days. No credit card required.

  • Clickstream Data : Definition, Use Cases, and More

    15 avril 2024, par Erin

    Gaining a deeper understanding of user behaviour — customers’ different paths, digital footprints, and engagement patterns — is crucial for providing a personalised experience and making informed marketing decisions. 

    In that sense, clickstream data, or a comprehensive record of a user’s online activities, is one of the most valuable sources of actionable insights into users’ behavioural patterns. 

    This article will cover everything marketing teams need to know about clickstream data, from the basic definition and examples to benefits, use cases, and best practices. 

    What is clickstream data ? 

    As a form of web analytics, clickstream data focuses on tracking and analysing a user’s online activity. These digital breadcrumbs offer insights into the websites the user has visited, the pages they viewed, how much time they spent on a page, and where they went next.

    Illustration of collecting and analysing data

    Your clickstream pipeline can be viewed as a “roadmap” that can help you recognise consistent patterns in how users navigate your website. 

    With that said, you won’t be able to learn much by analysing clickstream data collected from one user’s session. However, a proper analysis of large clickstream datasets can provide a wealth of information about consumers’ online behaviours and trends — which marketing teams can use to make informed decisions and optimise their digital marketing strategy. 

    Clickstream data collection can serve numerous purposes, but the main goal remains the same — gaining valuable insights into visitors’ behaviours and online activities to deliver a better user experience and improve conversion likelihood. 

    Depending on the specific events you’re tracking, clickstream data can reveal the following : 

    • How visitors reach your website 
    • The terms they type into the search engine
    • The first page they land on
    • The most popular pages and sections of your website
    • The amount of time they spend on a page 
    • Which elements of the page they interact with, and in what sequence
    • The click path they take 
    • When they convert, cancel, or abandon their cart
    • Where the user goes once they leave your website

    As you can tell, once you start collecting this type of data, you’ll learn quite a bit about the user’s online journey and the different ways they engage with your website — all without including any personal details about your visitors.

    Types of clickstream data 

    While all clickstream data keeps a record of the interactions that occur while the user is navigating a website or a mobile application — or any other digital platform — it can be divided into two types : 

    • Aggregated (web traffic) data provides comprehensive insights into the total number of visits and user interactions on a digital platform — such as your website — within a given timeframe 
    • Unaggregated data is broken up into smaller segments, focusing on an individual user’s online behaviour and website interactions 

    One thing to remember is that to gain valuable insights into user behaviour and uncover sequential patterns, you need a powerful tool and access to full clickstream datasets. Matomo’s Event Tracking can provide a comprehensive view of user interactions on your website or mobile app — everything from clicking a button and completing a form to adding (or removing) products from their cart. 

    On that note, based on the specific events you’re tracking when a user visits your website, clickstream data can include : 

    • Web navigation data : referring URL, visited pages, click path, and exit page
    • User interaction data : mouse movements, click rate, scroll depth, and button clicks
    • Conversion data : form submissions, sign-ups, and transactions 
    • Temporal data : page load time, timestamps, and the date and time of day of the user’s last login 
    • Session data : duration, start, and end times and number of pages viewed per session
    • Error data : 404 errors and network or server response issues 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Clickstream data benefits and use cases 

    Given the actionable insights that clickstream data collection provides, it can serve a wide range of use cases — from identifying behavioural patterns and trends and examining competitors’ performance to helping marketing teams map out customer journeys and improve ROI.

    Example of using clickstream data for marketing ROI

    According to the global Clickstream Analytics Market Report 2024, some key applications of clickstream analytics include click-path optimisation, website and app optimisation, customer analysis, basket analysis, personalisation, and traffic analysis. 

    The behavioural patterns and user preferences revealed by clickstream analytics data can have many applications — we’ve outlined the prominent use cases below. 

    Customer journey mapping 

    Clickstream data allows you to analyse the e-commerce customer’s online journey and provides insights into how they navigate your website. With such a comprehensive view of their click path, it becomes easier to understand user behaviour at each stage — from initial awareness to conversion — identify the most effective touchpoints and fine-tune that journey to improve their conversion likelihood. 

    Identifying customer trends 

    Clickstream data analytics can also help you identify trends and behavioural patterns — the most common sequences and similarities in how users reached your website and interacted with it — especially when you can access data from many website visitors. 

    Think about it — there are many ways in which you can use these insights into the sequence of clicks and interactions and recurring patterns to your team’s advantage. 

    Here’s an example : 

    It can reveal that some pieces of content and CTAs are performing well in encouraging visitors to take action — which shows how you should optimise other pages and what you should strive to create in the future, too. 

    Preventing site abandonment 

    Cart abandonment remains a serious issue for online retailers : 

    According to a recent report, the global cart abandonment rate in the fourth quarter of 2023 was at 83%. 

    That means that roughly eight out of ten e-commerce customers will abandon their shopping carts — most commonly due to additional costs, slow website loading times and the requirement to create an account before purchasing. 

    In addition to cart abandonment predictions, clickstream data analytics can reveal the pages where most visitors tend to leave your website. These drop-off points are clear indicators that something’s not working as it should — and once you can pinpoint them, you’ll be able to address the issue and increase conversion likelihood.

    Improving marketing campaign ROI 

    As previously mentioned, clickstream data analysis provides insights into the customer journey. Still, you may not realise that you can also use this data to keep track of your marketing effectiveness

    Global digital ad spending continues to grow — and is expected to reach $836 billion by 2026. It’s easy to see why relying on accurate data is crucial when deciding which marketing channels to invest in. 

    You want to ensure you’re allocating your digital marketing and advertising budget to the channels — be it SEO, pay-per-click (PPC) ads, or social media campaigns — that impact driving conversions. 

    When you combine clickstream e-commerce data with conversion rates, you’ll find the latter in Matomo’s goal reports and have a solid, data-driven foundation for making better marketing decisions.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Delivering a better user experience (UX) 

    Clickstream data analysis allows you to identify specific “pain points” — areas of the website that are difficult to use and may cause customer frustration. 

    It’s clear how this would be beneficial to your business : 

    Once you’ve identified these pain points, you can make the necessary changes to your website’s layout and address any technical issues that users might face, improving usability and delivering a smoother experience to potential customers. 

    Collecting clickstream data : Tools and legal implications 

    Your team will need a powerful tool capable of handling clickstream analytics to reap the benefits we’ve discussed previously. But at the same time, you need to respect users’ online privacy throughout clickstream data collection.

    Illustration of user’s data protection and online security

    Generally speaking, there are two ways to collect data about users’ online activity — web analytics tools and server log files.

    Web analytics tools are the more commonly used solution. Specifically designed to collect and analyse website data, these tools rely on JavaScript tags that run in the browser, providing actionable insights about user behaviour. Server log files can be a gold mine of data, too — but that data is raw and unfiltered, making it much more challenging to interpret and analyse. 

    That brings us to one of the major clickstream challenges to keep in mind as you move forward — compliance.

    While Google remains a dominant player in the web analytics market, there’s one area where Matomo has a significant advantage — user privacy. 

    Matomo operates according to privacy laws — including the General Data Protection Regulation (GDPR) and California Consumer Privacy Act (CCPA), making it an ethical alternative to Google Analytics. 

    It should go without saying, but compliance with data privacy laws — the most talked-about one being the GDPR framework introduced by the EU — isn’t something you can afford to overlook. 

    The GDPR was first implemented in the EU in 2018. Since then, several fines have been issued for non-compliance — including the record fine of €1.2 billion that Meta Platforms, Inc. received in 2023 for transferring personal data of EU-based users to the US.

    Clickstream analytics data best practices 

    Illustration of collecting, analysing and presenting data

    As valuable as it might be, processing large amounts of clickstream analytics data can be a complex — and, at times, overwhelming — process. 

    Here are some best practices to keep in mind when it comes to clickstream analysis : 

    Define your goals 

    It’s essential to take the time to define your goals and objectives. 

    Once you have a clear idea of what you want to learn from a given clickstream dataset and the outcomes you hope to see, it’ll be easier to narrow down your scope — rather than trying to tackle everything at once — before moving further down the clickstream pipeline. 

    Here are a few examples of goals and objectives you can set for clickstream analysis : 

    • Understanding and predicting users’ behavioural patterns 
    • Optimising marketing campaigns and ROI 
    • Attributing conversions to specific marketing touchpoints and channels

    Analyse your data 

    Collecting clickstream analytics data is only part of the equation ; what you do with raw data and how you analyse it matters. You can have the most comprehensive dataset at your disposal — but it’ll be practically worthless if you don’t have the skill set to analyse and interpret it. 

    In short, this is the stage of your clickstream pipeline where you uncover common sequences and consistent patterns in user behaviour. 

    Clickstream data analytics can extract actionable insights from large datasets using various approaches, models, and techniques. 

    Here are a few examples : 

    • If you’re working with clickstream e-commerce data, you should perform funnel or conversion analyses to track conversion rates as users move through your sales funnel. 
    • If you want to group and analyse users based on shared characteristics, you can use Matomo for cohort analysis
    • If your goal is to predict future trends and outcomes — conversion and cart abandonment prediction, for example — based on available data, prioritise predictive analytics.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Organise and visualise your data

    As you reach the end of your clickstream pipeline, you need to start thinking about how you will present and communicate your data. And what better way to do that than to transform that data into easy-to-understand visualisations ? 

    Here are a few examples of easily digestible formats that facilitate quick decision-making : 

    • User journey maps, which illustrate the exact sequence of interactions and user flow through your website 
    • Heatmaps, which serve as graphical — and typically colour-coded — representations of a website visitor’s activity 
    • Funnel analysis, which are broader at the top but get increasingly narrower towards the bottom as users flow through and drop off at different stages of the pipeline 

    Collect clickstream data with Matomo 

    Clickstream data is hard to beat when tracking the website visitor’s journey — from first to last interaction — and understanding user behaviour. By providing real-time insights, your clickstream pipeline can help you see the big picture, stay ahead of the curve and make informed decisions about your marketing efforts. 

    Matomo accurate data and compliance with GDPR and other data privacy regulations — it’s an all-in-one, ethical platform that can meet all your web analytics needs. That’s why over 1 million websites use Matomo for their web analytics.

    Try Matomo free for 21 days. No credit card required.

  • ffmpeg produces duplicate pts with "wallclock_as_timestamps 1" option on MKV

    15 avril 2024, par Jax2171

    I need to get real time reference of every keyframe captured by an IP camera. The -wallclock_as_timestamps 1 option seems to do the trick for us, however we are forced to replace the TS output container with MKV to get a correct PTS epoch value 1712996356.833000.

    


    Here is the ffmpeg command used :

    


    ffmpeg -report -use_wallclock_as_timestamps 1 -rtsp_transport tcp -i rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0 -c:v copy -c:a aac -copyts -f matroska -y rec.mkv


    


    The capture process runs without any relevant worning or error messages.

    


    However, playing the captured video with any player shows very short and evident but very annoying lags. Upon investigation I discovered that many frame PTSs have the same value. The command I used to show duplicate PTSs is as follows :

    


    ffprobe -v error -show_entries frame=pkt_pts_time -select_streams v -of csv=p=0 rec.mkv | sort | uniq -d


    


    On a recording of about 10 minutes the result of the duplicate PTS is the following :

    


    1713086493.367000
1713086493.368000
1713086493.370000
1713086493.372000
1713086543.714000
1713086558.793000
1713086558.817000
1713086558.872000
1713086561.780000
1713086564.642000
1713086564.657000
1713086564.778000
1713086565.794000
...


    


    I'm not sure if the lag problem is caused by this, however the problem does not occur with the TS container, which however I cannot use due to the PTS values being roundly 33 bit.

    


    The -vsync 0 or -vsync 2 options on input or output didn't help.

    


    This is the log using the -report option :

    


        ffmpeg started on 2024-04-15 at 09:04:38
Report written to "ffmpeg-20240415-090438.log"
Log level: 48
Command line:
ffmpeg -report -stats -hide_banner -use_wallclock_as_timestamps 1 -rtsp_transport tcp -i "rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0" -c:v copy -c:a aac -copyts -f matroska -y rec.mkv
Splitting the commandline.
Reading option '-report' ... matched as option 'report' (generate a report) with argument '1'.
Reading option '-stats' ... matched as option 'stats' (print progress report during encoding) with argument '1'.
Reading option '-hide_banner' ... matched as option 'hide_banner' (do not show program banner) with argument '1'.
Reading option '-use_wallclock_as_timestamps' ... matched as AVOption 'use_wallclock_as_timestamps' with argument '1'.
Reading option '-rtsp_transport' ... matched as AVOption 'rtsp_transport' with argument 'tcp'.
Reading option '-i' ... matched as input url with argument 'rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0'.
Reading option '-c:v' ... matched as option 'c' (codec name) with argument 'copy'.
Reading option '-c:a' ... matched as option 'c' (codec name) with argument 'aac'.
Reading option '-copyts' ... matched as option 'copyts' (copy timestamps) with argument '1'.
Reading option '-f' ... matched as option 'f' (force format) with argument 'matroska'.
Reading option '-y' ... matched as option 'y' (overwrite output files) with argument '1'.
Reading option 'rec.mkv' ... matched as output url.
Finished splitting the commandline.
Parsing a group of options: global .
Applying option report (generate a report) with argument 1.
Applying option stats (print progress report during encoding) with argument 1.
Applying option hide_banner (do not show program banner) with argument 1.
Applying option copyts (copy timestamps) with argument 1.
Applying option y (overwrite output files) with argument 1.
Successfully parsed a group of options.
Parsing a group of options: input url rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0.
Successfully parsed a group of options.
Opening an input file: rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0.
[tcp @ 0x1646660] No default whitelist set
[tcp @ 0x1646660] Original list of addresses:
[tcp @ 0x1646660] Address 192.168.5.21 port 554
[tcp @ 0x1646660] Interleaved list of addresses:
[tcp @ 0x1646660] Address 192.168.5.21 port 554
[tcp @ 0x1646660] Starting connection attempt to 192.168.5.21 port 554
[tcp @ 0x1646660] Successfully connected to 192.168.5.21 port 554
[rtsp @ 0x1645e70] SDP:
v=0
o=- 2251950012 2251950012 IN IP4 0.0.0.0
s=Media Server
c=IN IP4 0.0.0.0
t=0 0
a=control:*
a=packetization-supported:DH
a=rtppayload-supported:DH
a=range:npt=now-
a=x-packetization-supported:IV
a=x-rtppayload-supported:IV
m=video 0 RTP/AVP 96
a=control:trackID=0
a=framerate:25.000000
a=rtpmap:96 H264/90000
a=fmtp:96 packetization-mode=1;profile-level-id=4D4028;sprop-parameter-sets=Z01AKKaAeAIn5ZuAgICgAAADACAAAAZQgAA=,aO48gAA=
a=recvonly
m=audio 0 RTP/AVP 97
a=control:trackID=1
a=rtpmap:97 MPEG4-GENERIC/16000
a=fmtp:97 streamtype=5;profile-level-id=1;mode=AAC-hbr;sizelength=13;indexlength=3;indexdeltalength=3;config=1408
a=recvonly

[rtsp @ 0x1645e70] video codec set to: h264
[rtsp @ 0x1645e70] RTP Packetization Mode: 1
[rtsp @ 0x1645e70] RTP Profile IDC: 4d Profile IOP: 40 Level: 28
[rtsp @ 0x1645e70] Extradata set to 0x164af98 (size: 39)
[rtsp @ 0x1645e70] audio codec set to: aac
[rtsp @ 0x1645e70] audio samplerate set to: 16000
[rtsp @ 0x1645e70] audio channels set to: 1
[rtsp @ 0x1645e70] setting jitter buffer size to 0
[rtsp @ 0x1645e70] setting jitter buffer size to 0
[rtsp @ 0x1645e70] hello state=0
Failed to parse interval end specification ''
[h264 @ 0x164ab30] nal_unit_type: 7(SPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 8(PPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 7(SPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 8(PPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 7(SPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 8(PPS), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 5(IDR), nal_ref_idc: 3
[h264 @ 0x164ab30] Format yuvj420p chosen by get_format().
[h264 @ 0x164ab30] Reinit context to 1920x1088, pix_fmt: yuvj420p
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[h264 @ 0x164ab30] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 3
[rtsp @ 0x1645e70] All info found
Input #0, rtsp, from 'rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0':
  Metadata:
    title           : Media Server
  Duration: N/A, start: 1713164678.794625, bitrate: N/A
    Stream #0:0, 22, 1/90000: Video: h264 (Main), yuvj420p(pc, bt709, progressive), 1920x1080, 25 fps, 25 tbr, 90k tbn, 50 tbc
    Stream #0:1, 15, 1/16000: Audio: aac (LC), 16000 Hz, mono, fltp
Successfully opened the file.
Parsing a group of options: output url rec.mkv.
Applying option c:v (codec name) with argument copy.
Applying option c:a (codec name) with argument aac.
Applying option f (force format) with argument matroska.
Successfully parsed a group of options.
Opening an output file: rec.mkv.
[file @ 0x1699f30] Setting default whitelist 'file,crypto,data'
Successfully opened the file.
Stream mapping:
  Stream #0:0 -> #0:0 (copy)
  Stream #0:1 -> #0:1 (aac (native) -> aac (native))
Press [q] to stop, [?] for help
cur_dts is invalid st:0 (0) [init:1 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
cur_dts is invalid st:1 (0) [init:0 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
detected 4 logical cores
[graph_0_in_0_1 @ 0x1682bb0] Setting 'time_base' to value '1/16000'
[graph_0_in_0_1 @ 0x1682bb0] Setting 'sample_rate' to value '16000'
[graph_0_in_0_1 @ 0x1682bb0] Setting 'sample_fmt' to value 'fltp'
[graph_0_in_0_1 @ 0x1682bb0] Setting 'channel_layout' to value '0x4'
[graph_0_in_0_1 @ 0x1682bb0] tb:1/16000 samplefmt:fltp samplerate:16000 chlayout:0x4
[format_out_0_1 @ 0x187f2e0] Setting 'sample_fmts' to value 'fltp'
[format_out_0_1 @ 0x187f2e0] Setting 'sample_rates' to value '96000|88200|64000|48000|44100|32000|24000|22050|16000|12000|11025|8000|7350'
[AVFilterGraph @ 0x164fd70] query_formats: 4 queried, 9 merged, 0 already done, 0 delayed
[matroska @ 0x169c330] get_metadata_duration returned: 0
Output #0, matroska, to 'rec.mkv':
  Metadata:
    title           : Media Server
    encoder         : Lavf58.45.100
    Stream #0:0, 0, 1/1000: Video: h264 (Main) (H264 / 0x34363248), yuvj420p(pc, bt709, progressive), 1920x1080, q=2-31, 25 fps, 25 tbr, 1k tbn, 90k tbc
    Stream #0:1, 0, 1/1000: Audio: aac (LC) ([255][0][0][0] / 0x00FF), 16000 Hz, mono, fltp, 69 kb/s
    Metadata:
      encoder         : Lavc58.91.100 aac
cur_dts is invalid st:0 (0) [init:1 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
cur_dts is invalid st:1 (0) [init:1 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
cur_dts is invalid st:0 (0) [init:1 i_done:0 finish:0] (this is harmless if it occurs once at the start per stream)
[matroska @ 0x169c330] Starting new cluster with timestamp 1713164678731 at offset 770 bytes
[matroska @ 0x169c330] Writing block of size 581 with pts 1713164678731, dts 1713164678731, duration 64 at relative offset 14 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 517 with pts 1713164678795, dts 1713164678795, duration 64 at relative offset 602 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 376900 with pts 1713164678872, dts 1713164678872, duration 40 at relative offset 1126 in cluster at offset 770. TrackNumber 1, keyframe 1
[matroska @ 0x169c330] Writing block of size 8172 with pts 1713164678912, dts 1713164678912, duration 40 at relative offset 378034 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 672 with pts 1713164678912, dts 1713164678912, duration 64 at relative offset 386213 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 550 with pts 1713164679177, dts 1713164679177, duration 64 at relative offset 386892 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7654 with pts 1713164679178, dts 1713164679178, duration 40 at relative offset 387449 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7483 with pts 1713164679213, dts 1713164679213, duration 40 at relative offset 395110 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7703 with pts 1713164679242, dts 1713164679242, duration 40 at relative offset 402600 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 565 with pts 1713164679242, dts 1713164679242, duration 64 at relative offset 410310 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7650 with pts 1713164679271, dts 1713164679271, duration 40 at relative offset 410882 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 585 with pts 1713164679271, dts 1713164679271, duration 64 at relative offset 418539 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 8682 with pts 1713164679301, dts 1713164679301, duration 40 at relative offset 419131 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 8888 with pts 1713164679330, dts 1713164679330, duration 40 at relative offset 427820 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 506 with pts 1713164679330, dts 1713164679330, duration 64 at relative offset 436715 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 8019 with pts 1713164679360, dts 1713164679360, duration 40 at relative offset 437228 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7919 with pts 1713164679361, dts 1713164679361, duration 40 at relative offset 445254 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7822 with pts 1713164679361, dts 1713164679361, duration 40 at relative offset 453180 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 699 with pts 1713164679361, dts 1713164679361, duration 64 at relative offset 461009 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 619 with pts 1713164679361, dts 1713164679361, duration 64 at relative offset 461715 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7768 with pts 1713164679362, dts 1713164679362, duration 40 at relative offset 462341 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 8469 with pts 1713164679362, dts 1713164679362, duration 40 at relative offset 470116 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 601 with pts 1713164679362, dts 1713164679362, duration 64 at relative offset 478592 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 559 with pts 1713164679363, dts 1713164679363, duration 64 at relative offset 479200 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 8265 with pts 1713164679366, dts 1713164679366, duration 40 at relative offset 479766 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7766 with pts 1713164679406, dts 1713164679406, duration 40 at relative offset 488038 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 531 with pts 1713164679415, dts 1713164679415, duration 64 at relative offset 495811 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7753 with pts 1713164679446, dts 1713164679446, duration 40 at relative offset 496349 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 8274 with pts 1713164679486, dts 1713164679486, duration 40 at relative offset 504109 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 569 with pts 1713164679496, dts 1713164679496, duration 64 at relative offset 512390 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 8445 with pts 1713164679526, dts 1713164679526, duration 40 at relative offset 512966 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 522 with pts 1713164679535, dts 1713164679535, duration 64 at relative offset 521418 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7922 with pts 1713164679566, dts 1713164679566, duration 40 at relative offset 521947 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7954 with pts 1713164679606, dts 1713164679606, duration 40 at relative offset 529876 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 503 with pts 1713164679615, dts 1713164679615, duration 64 at relative offset 537837 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 11167 with pts 1713164679646, dts 1713164679646, duration 40 at relative offset 538347 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 503 with pts 1713164679655, dts 1713164679655, duration 64 at relative offset 549521 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 10534 with pts 1713164679686, dts 1713164679686, duration 40 at relative offset 550031 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7607 with pts 1713164679726, dts 1713164679726, duration 40 at relative offset 560572 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 478 with pts 1713164679772, dts 1713164679772, duration 64 at relative offset 568186 in cluster at offset 770. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7842 with pts 1713164679774, dts 1713164679774, duration 40 at relative offset 568671 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 9862 with pts 1713164679806, dts 1713164679806, duration 40 at relative offset 576520 in cluster at offset 770. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Starting new cluster with timestamp 1713164679815 at offset 587166 bytes
[matroska @ 0x169c330] Writing block of size 449 with pts 1713164679815, dts 1713164679815, duration 64 at relative offset 14 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 379456 with pts 1713164679870, dts 1713164679870, duration 40 at relative offset 470 in cluster at offset 587166. TrackNumber 1, keyframe 1
[matroska @ 0x169c330] Writing block of size 415 with pts 1713164679903, dts 1713164679903, duration 64 at relative offset 379934 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7008 with pts 1713164679905, dts 1713164679905, duration 40 at relative offset 380356 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6917 with pts 1713164679925, dts 1713164679925, duration 40 at relative offset 387371 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 513 with pts 1713164679935, dts 1713164679935, duration 64 at relative offset 394295 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7111 with pts 1713164679966, dts 1713164679966, duration 40 at relative offset 394815 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 753 with pts 1713164679975, dts 1713164679975, duration 64 at relative offset 401933 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7091 with pts 1713164680006, dts 1713164680006, duration 40 at relative offset 402693 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7045 with pts 1713164680045, dts 1713164680045, duration 40 at relative offset 409791 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 659 with pts 1713164680055, dts 1713164680055, duration 64 at relative offset 416843 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6983 with pts 1713164680086, dts 1713164680086, duration 40 at relative offset 417509 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6932 with pts 1713164680127, dts 1713164680127, duration 40 at relative offset 424499 in cluster at offset 587166. TrackNumber 1, keyframe 0
frame=   35 fps=0.0 q=-1.0 size=     512kB time=475879:04:40.20 bitrate=   0.0kbits/s speed=3.35e+09x    
[matroska @ 0x169c330] Writing block of size 691 with pts 1713164680135, dts 1713164680135, duration 64 at relative offset 431438 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6990 with pts 1713164680166, dts 1713164680166, duration 40 at relative offset 432136 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 651 with pts 1713164680176, dts 1713164680176, duration 64 at relative offset 439133 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7046 with pts 1713164680206, dts 1713164680206, duration 40 at relative offset 439791 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 7130 with pts 1713164680246, dts 1713164680246, duration 40 at relative offset 446844 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 601 with pts 1713164680255, dts 1713164680255, duration 64 at relative offset 453981 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 7205 with pts 1713164680286, dts 1713164680286, duration 40 at relative offset 454589 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 561 with pts 1713164680295, dts 1713164680295, duration 64 at relative offset 461801 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6936 with pts 1713164680326, dts 1713164680326, duration 40 at relative offset 462369 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6822 with pts 1713164680366, dts 1713164680366, duration 40 at relative offset 469312 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 621 with pts 1713164680375, dts 1713164680375, duration 64 at relative offset 476141 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6845 with pts 1713164680405, dts 1713164680405, duration 40 at relative offset 476769 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6848 with pts 1713164680445, dts 1713164680445, duration 40 at relative offset 483621 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 588 with pts 1713164680455, dts 1713164680455, duration 64 at relative offset 490476 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6828 with pts 1713164680486, dts 1713164680486, duration 40 at relative offset 491071 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 546 with pts 1713164680495, dts 1713164680495, duration 64 at relative offset 497906 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6845 with pts 1713164680526, dts 1713164680526, duration 40 at relative offset 498459 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6924 with pts 1713164680566, dts 1713164680566, duration 40 at relative offset 505311 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 508 with pts 1713164680576, dts 1713164680576, duration 64 at relative offset 512242 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6844 with pts 1713164680606, dts 1713164680606, duration 40 at relative offset 512757 in cluster at offset 587166. TrackNumber 1, keyframe 0
frame=   48 fps= 47 q=-1.0 size=     512kB time=475879:04:40.72 bitrate=   0.0kbits/s speed=1.66e+09x    
[matroska @ 0x169c330] Writing block of size 587 with pts 1713164680615, dts 1713164680615, duration 64 at relative offset 519608 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6859 with pts 1713164680645, dts 1713164680645, duration 40 at relative offset 520202 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 6855 with pts 1713164680686, dts 1713164680686, duration 40 at relative offset 527068 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 573 with pts 1713164680695, dts 1713164680695, duration 64 at relative offset 533930 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6881 with pts 1713164680726, dts 1713164680726, duration 40 at relative offset 534510 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 10773 with pts 1713164680766, dts 1713164680766, duration 40 at relative offset 541398 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 520 with pts 1713164680775, dts 1713164680775, duration 64 at relative offset 552178 in cluster at offset 587166. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6923 with pts 1713164680805, dts 1713164680805, duration 40 at relative offset 552705 in cluster at offset 587166. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Starting new cluster with timestamp 1713164680815 at offset 1146808 bytes
[matroska @ 0x169c330] Writing block of size 580 with pts 1713164680815, dts 1713164680815, duration 64 at relative offset 14 in cluster at offset 1146808. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 380085 with pts 1713164680864, dts 1713164680864, duration 40 at relative offset 601 in cluster at offset 1146808. TrackNumber 1, keyframe 1
[matroska @ 0x169c330] Writing block of size 9916 with pts 1713164680896, dts 1713164680896, duration 40 at relative offset 380694 in cluster at offset 1146808. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 541 with pts 1713164680901, dts 1713164680901, duration 64 at relative offset 390617 in cluster at offset 1146808. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 5877 with pts 1713164680925, dts 1713164680925, duration 40 at relative offset 391165 in cluster at offset 1146808. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] Writing block of size 529 with pts 1713164680935, dts 1713164680935, duration 64 at relative offset 397049 in cluster at offset 1146808. TrackNumber 2, keyframe 1
[matroska @ 0x169c330] Writing block of size 6661 with pts 1713164680966, dts 1713164680966, duration 40 at relative offset 397585 in cluster at offset 1146808. TrackNumber 1, keyframe 0
[matroska @ 0x169c330] end duration = 1713164681006
[matroska @ 0x169c330] stream 0 end duration = 1713164681006
[matroska @ 0x169c330] stream 1 end duration = 1713164680999
frame=   54 fps= 42 q=-1.0 Lsize=    1515kB time=475879:04:40.99 bitrate=   0.0kbits/s speed=1.33e+09x    
video:1493kB audio:20kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.099897%
Input file #0 (rtsp://user:password1@192.168.5.21/cam/realmonitor?channel=1channel1[1]=1subtype=0):
  Input stream #0:0 (video): 54 packets read (1529156 bytes); 
  Input stream #0:1 (audio): 35 packets read (9268 bytes); 35 frames decoded (35840 samples); 
  Total: 89 packets (1538424 bytes) demuxed
Output file #0 (rec.mkv):
  Output stream #0:0 (video): 54 packets muxed (1529156 bytes); 
  Output stream #0:1 (audio): 35 frames encoded (35840 samples); 36 packets muxed (20446 bytes); 
  Total: 90 packets (1549602 bytes) muxed
35 frames successfully decoded, 0 decoding errors
[AVIOContext @ 0x1667620] Statistics: 2 seeks, 7 writeouts
[aac @ 0x1673880] Qavg: 142.738
Exiting normally, received signal 15.


    


    In this short 3 second capture the duplicate timestamps are 1713164679.361000 and 1713164679.362000.

    


    How can I solve this problem ? What different approach could I use to achieve this goal ?

    


    Thanks in advance.