Recherche avancée

Médias (91)

Autres articles (22)

  • Installation en mode ferme

    4 février 2011, par

    Le mode ferme permet d’héberger plusieurs sites de type MediaSPIP en n’installant qu’une seule fois son noyau fonctionnel.
    C’est la méthode que nous utilisons sur cette même plateforme.
    L’utilisation en mode ferme nécessite de connaïtre un peu le mécanisme de SPIP contrairement à la version standalone qui ne nécessite pas réellement de connaissances spécifique puisque l’espace privé habituel de SPIP n’est plus utilisé.
    Dans un premier temps, vous devez avoir installé les mêmes fichiers que l’installation (...)

  • D’autres logiciels intéressants

    12 avril 2011, par

    On ne revendique pas d’être les seuls à faire ce que l’on fait ... et on ne revendique surtout pas d’être les meilleurs non plus ... Ce que l’on fait, on essaie juste de le faire bien, et de mieux en mieux...
    La liste suivante correspond à des logiciels qui tendent peu ou prou à faire comme MediaSPIP ou que MediaSPIP tente peu ou prou à faire pareil, peu importe ...
    On ne les connais pas, on ne les a pas essayé, mais vous pouvez peut être y jeter un coup d’oeil.
    Videopress
    Site Internet : (...)

  • Les statuts des instances de mutualisation

    13 mars 2010, par

    Pour des raisons de compatibilité générale du plugin de gestion de mutualisations avec les fonctions originales de SPIP, les statuts des instances sont les mêmes que pour tout autre objets (articles...), seuls leurs noms dans l’interface change quelque peu.
    Les différents statuts possibles sont : prepa (demandé) qui correspond à une instance demandée par un utilisateur. Si le site a déjà été créé par le passé, il est passé en mode désactivé. publie (validé) qui correspond à une instance validée par un (...)

Sur d’autres sites (4484)

  • What is Behavioural Segmentation and Why is it Important ?

    28 septembre 2023, par Erin — Analytics Tips

    Amidst the dynamic landscape of web analytics, understanding customers has grown increasingly vital for businesses to thrive. While traditional demographic-focused strategies possess merit, they need to uncover the nuanced intricacies of individual online behaviours and preferences. As customer expectations evolve in the digital realm, enterprises must recalibrate their approaches to remain relevant and cultivate enduring digital relationships.

    In this context, the surge of technology and advanced data analysis ushers in a marketing revolution : behavioural segmentation. Businesses can unearth invaluable insights by meticulously scrutinising user actions, preferences and online interactions. These insights lay the foundation for precisely honed, high-performing, personalised campaigns. The era dominated by blanket, catch-all marketing strategies is yielding to an era of surgical precision and tailored engagement. 

    While the insights from user behaviours empower businesses to optimise customer experiences, it’s essential to strike a delicate balance between personalisation and respecting user privacy. Ethical use of behavioural data ensures that the power of segmentation is wielded responsibly and in compliance, safeguarding user trust while enabling businesses to thrive in the digital age.

    What is behavioural segmentation ?

    Behavioural segmentation is a crucial concept in web analytics and marketing. It involves categorising individuals or groups of users based on their online behaviour, actions and interactions with a website. This segmentation method focuses on understanding how users engage with a website, their preferences and their responses to various stimuli. Behavioural segmentation classifies users into distinct segments based on their online activities, such as the pages they visit, the products they view, the actions they take and the time they spend on a site.

    Behavioural segmentation plays a pivotal role in web analytics for several reasons :

    1. Enhanced personalisation :

    Understanding user behaviour enables businesses to personalise online experiences. This aids with delivering tailored content and recommendations to boost conversion, customer loyalty and customer satisfaction.

    2. Improved user experience :

    Behavioural segmentation optimises user interfaces (UI) and navigation by identifying user paths and pain points, enhancing the level of engagement and retention.

    3. Targeted marketing :

    Behavioural segmentation enhances marketing efficiency by tailoring campaigns to user behaviour. This increases the likelihood of interest in specific products or services.

    4. Conversion rate optimisation :

    Analysing behavioural data reveals factors influencing user decisions, enabling website optimisation for a streamlined purchasing process and higher conversion rates.

    5. Data-driven decision-making :

    Behavioural segmentation empowers data-driven decisions. It identifies trends, behavioural patterns and emerging opportunities, facilitating adaptation to changing user preferences and market dynamics.

    6. Ethical considerations :

    Behavioural segmentation provides valuable insights but raises ethical concerns. User data collection and use must prioritise transparency, privacy and responsible handling to protect individuals’ rights.

    The significance of ethical behavioural segmentation will be explored more deeply in a later section, where we will delve into the ethical considerations and best practices for collecting, storing and utilising behavioural data in web analytics. It’s essential to strike a balance between harnessing the power of behavioural segmentation for business benefits and safeguarding user privacy and data rights in the digital age.

    A woman surrounded by doors shaped like heads of different

    Different types of behavioural segments with examples

    1. Visit-based segments : These segments hinge on users’ visit patterns. Analyse visit patterns, compare first-time visitors to returning ones, or compare users landing on specific pages to those landing on others.
      • Example : The real estate website Zillow can analyse how first-time visitors and returning users behave differently. By understanding these patterns, Zillow can customise its website for each group. For example, they can highlight featured listings and provide navigation tips for first-time visitors while offering personalised recommendations and saved search options for returning users. This could enhance user satisfaction and boost the chances of conversion.
    2. Interaction-based segments : Segments can be created based on user interactions like special events or goals completed on the site.
      • Example : Airbnb might use this to understand if users who successfully book accommodations exhibit different behaviours than those who don’t. This insight could guide refinements in the booking process for improved conversion rates.
    3. Campaign-based segments : Beyond tracking visit numbers, delve into usage differences of visitors from specific sources or ad campaigns for deeper insights.
      • Example : Nike might analyse user purchase behaviour from various traffic sources (referral websites, organic, direct, social media and ads). This informs marketing segmentation adjustments, focusing on high-performance channels. It also customises the website experience for different traffic sources, optimising content, promotions and navigation. This data-driven approach could boost user experiences and maximise marketing impact for improved brand engagement and sales conversions.
    4. Ecommerce segments : Separate users based on purchases, even examining the frequency of visits linked to specific products. Segment heavy users versus light users. This helps uncover diverse customer types and browsing behaviours.
      • Example : Amazon could create segments to differentiate between visitors who made purchases and those who didn’t. This segmentation could reveal distinct usage patterns and preferences, aiding Amazon in tailoring its recommendations and product offerings.
    5. Demographic segments : Build segments based on browser language or geographic location, for instance, to comprehend how user attributes influence site interactions.
      • Example : Netflix can create user segments based on demographic factors like geographic location to gain insight into how a visitor’s location can influence content preferences and viewing behaviour. This approach could allow for a more personalised experience.
    6. Technographic segments : Segment users by devices or browsers, revealing variations in site experience and potential platform-specific issues or user attitudes.
      • Example : Google could create segments based on users’ devices (e.g., mobile, desktop) to identify potential issues in rendering its search results. This information could be used to guide Google in providing consistent experiences regardless of device.
    A group of consumers split into different segments based on their behaviour

    The importance of ethical behavioural segmentation

    Respecting user privacy and data protection is crucial. Matomo offers features that align with ethical segmentation practices. These include :

    • Anonymization : Matomo allows for data anonymization, safeguarding individual identities while providing valuable insights.
    • GDPR compliance : Matomo is GDPR compliant, ensuring that user data is handled following European data protection regulations.
    • Data retention and deletion : Matomo enables businesses to set data retention policies and delete user data when it’s no longer needed, reducing the risk of data misuse.
    • Secured data handling : Matomo employs robust security measures to protect user data, reducing the risk of data breaches.

    Real-world examples of ethical behavioural segmentation :

    1. Content publishing : A leading news website could utilise data anonymization tools to ethically monitor user engagement. This approach allows them to optimise content delivery based on reader preferences while ensuring the anonymity and privacy of their target audience.
    2. Non-profit organisations : A charity organisation could embrace granular user control features. This could be used to empower its donors to manage their data preferences, building trust and loyalty among supporters by giving them control over their personal information.
    Person in a suit holding a red funnel that has data flowing through it into a file

    Examples of effective behavioural segmentation

    Companies are constantly using behavioural insights to engage their audiences effectively. In this section, we’ll delve into real-world examples showcasing how top companies use behavioural segmentation to enhance their marketing efforts.

    A woman standing in front of a pie chart pointing to the top right-hand section of customers in that segment
    1. Coca-Cola’s behavioural insights for marketing strategy : Coca-Cola employs behavioural segmentation to evaluate its advertising campaigns. Through analysing user engagement across TV commercials, social media promotions and influencer partnerships, Coca-Cola’s marketing team can discover that video ads shared by influencers generate the highest ROI and web traffic.

      This insight guides the reallocation of resources, leading to increased sales and a more effective advertising strategy.

    2. eBay’s custom conversion approach : eBay excels in conversion optimisation through behavioural segmentation. When users abandon carts, eBay’s dynamic system sends personalised email reminders featuring abandoned items and related recommendations tailored to user interests and past purchase decisions.

      This strategy revives sales, elevates conversion rates and sparks engagement. eBay’s adeptness in leveraging behavioural insights transforms user experience, steering a customer journey toward conversion.

    3. Sephora’s data-driven conversion enhancement : Data analysts can use Sephora’s behavioural segmentation strategy to fuel revenue growth through meticulous data analysis. By identifying a dedicated subset of loyal customers who exhibit a consistent preference for premium skincare products, data analysts enable Sephora to customise loyalty programs.

      These personalised rewards programs provide exclusive discounts and early access to luxury skincare releases, resulting in heightened customer engagement and loyalty. The data-driven precision of this approach directly contributes to amplified revenue from this specific customer segment.

    Examples of the do’s and don’ts of behavioural segmentation 

    Happy woman surrounded by icons of things and activities she enjoys

    Behavioural segmentation is a powerful marketing and data analysis tool, but its success hinges on ethical and responsible practices. In this section, we will explore real-world examples of the do’s and don’ts of behavioural segmentation, highlighting companies that have excelled in their approach and those that have faced challenges due to lapses in ethical considerations.

    Do’s of behavioural segmentation :

    • Personalised messaging :
      • Example : Spotify
        • Spotify’s success lies in its ability to use behavioural data to curate personalised playlists and user recommendations, enhancing its music streaming experience.
    • Transparency :
      • Example : Basecamp
        • Basecamp’s transparency in sharing how user data is used fosters trust. They openly communicate data practices, ensuring users are informed and comfortable.
    • Anonymization
      • Example : Matomo’s anonymization features
        • Matomo employs anonymization features to protect user identities while providing valuable insights, setting a standard for responsible data handling.
    • Purpose limitation :
      • Example : Proton Mail
        • Proton Mail strictly limits the use of user data to email-related purposes, showcasing the importance of purpose-driven data practices.
    • Dynamic content delivery : 
      • Example : LinkedIn
        • LinkedIn uses behavioural segmentation to dynamically deliver job recommendations, showcasing the potential for relevant content delivery.
    • Data security :
      • Example : Apple
        • Apple’s stringent data security measures protect user information, setting a high bar for safeguarding sensitive data.
    • Adherence to regulatory compliance : 
      • Example : Matomo’s regulatory compliance features
        • Matomo’s regulatory compliance features ensure that businesses using the platform adhere to data protection regulations, further promoting responsible data usage.

    Don’ts of behavioural segmentation :

    • Ignoring changing regulations
      • Example : Equifax
        • Equifax faced major repercussions for neglecting evolving regulations, resulting in a data breach that exposed the sensitive information of millions.
    • Sensitive attributes
      • Example : Twitter
        • Twitter faced criticism for allowing advertisers to target users based on sensitive attributes, sparking concerns about user privacy and data ethics.
    • Data sharing without consent
      • Example : Meta & Cambridge Analytica
        • The Cambridge Analytica scandal involving Meta (formerly Facebook) revealed the consequences of sharing user data without clear consent, leading to a breach of trust.
    • Lack of control
      • Example : Uber
        • Uber faced backlash for its poor data security practices and a lack of control over user data, resulting in a data breach and compromised user information.
    • Don’t be creepy with invasive personalisation
      • Example : Offer Moment
        • Offer Moment’s overly invasive personalisation tactics crossed ethical boundaries, unsettling users and eroding trust.

    These examples are valuable lessons, emphasising the importance of ethical and responsible behavioural segmentation practices to maintain user trust and regulatory compliance in an increasingly data-driven world.

    Continue the conversation

    Diving into customer behaviours, preferences and interactions empowers businesses to forge meaningful connections with their target audience through targeted marketing segmentation strategies. This approach drives growth and fosters exceptional customer experiences, as evident from the various common examples spanning diverse industries.

    In the realm of ethical behavioural segmentation and regulatory compliance, Matomo is a trusted partner. Committed to safeguarding user privacy and data integrity, our advanced web analytics solution empowers your business to harness the power of behavioral segmentation, all while upholding the highest standards of compliance with stringent privacy regulations.

    To gain deeper insight into your visitors and execute impactful marketing campaigns, explore how Matomo can elevate your efforts. Try Matomo free for 21-days, no credit card required. 

  • FFmpeg - Max rtbufsize via dshow ?

    14 septembre 2018, par Nimble

    I recently added an additional 4K capture card to my setup and now I’m dropping frames while initializing and ending recordings. In the past I was encoding a 1080P60 stream and a 4K60 stream simultaneously and had no issues, but now that I am trying to encode 2 4K60 streams at once I’m dropping frames as mentioned before.

    The error displays as :

    [dshow @ 000001499bb17180] real-time buffer [Video (00 Pro Capture HDMI 4K+)] [video input] too full or near too full (62% of size: 2147480000 [rtbufsize parameter])! frame dropped!

    or

    [dshow @ 00000149944e7080] real-time buffer [AVerMedia HD Capture GC573 1] [video input] too full or near too full (62% of size: 2147480000 [rtbufsize parameter])! frame dropped!

    10 - 20 times when starting a recording or ending a recording.

    You’d think the solution would be simply increasing my rtbufsize but when I do I just get another error :

    [dshow @ 00000250df6c7080] Value 3000000000.000000 for parameter 'rtbufsize' out of range [0 - 2.14748e+09]
    [dshow @ 00000250df6c7080] Error setting option rtbufsize to value 3000M.
    video=AVerMedia HD Capture GC573 1:audio=SPDIF/ADAT (1+2) (RME Fireface UC): Result too large

    This same error seems to appear if I try to increase the rtbufsize past 2147.48M on any input so I assume it’s a limitation of FFmpeg and not my hardware ? If it is a baked in limitation of FFmpeg what would be the reasoning ? Any way to bypass or other possible solutions ?

    Full command :

    ffmpeg -y -hide_banner -thread_queue_size 9999 -indexmem 9999 -guess_layout_max 0 -f dshow -rtbufsize 2147.48M `
    -i audio="Analog (1+2) (RME Fireface UC)" `
    -thread_queue_size 9999 -indexmem 9999 -guess_layout_max 0 -f dshow -rtbufsize 2147.48M `
    -i audio="ADAT (5+6) (RME Fireface UC)" `
    -thread_queue_size 9999 -indexmem 9999 -guess_layout_max 0 -f dshow -video_size 3840x2160 -rtbufsize 2147.48M `
    -framerate 60 -pixel_format nv12 -i video="Video (00 Pro Capture HDMI 4K+)":audio="ADAT (3+4) (RME Fireface UC)" `
    -thread_queue_size 9999 -indexmem 9999 -guess_layout_max 0 -f dshow -video_size 3840x2160 -rtbufsize 2147.48M `
    -framerate 60 -pixel_format nv12 -i video="AVerMedia HD Capture GC573 1":audio="SPDIF/ADAT (1+2) (RME Fireface UC)" `
    -thread_queue_size 9999 -indexmem 9999 -r 25 -f lavfi -rtbufsize 2147.48M -i color=c=black:s=50x50 `
    -map 4,0 -map 0 -c:v libx264 -r 25 -rc-lookahead 50 -forced-idr 1 -sc_threshold 0 -flags +cgop `
    -force_key_frames "expr:gte(t,n_forced*2)" -preset ultrafast -pix_fmt nv12 -b:v 16K -minrate 16K -maxrate 16K -bufsize 16k `
    -c:a aac -ar 44100 -b:a 384k -ac 2 -af "aresample=async=250" -vsync 1 -ss 00:00:01.768 `
    -max_muxing_queue_size 9999 -f segment -segment_time 600 -segment_wrap 9 -reset_timestamps 1 `
    -segment_format_options max_delay=0 C:\Users\djcim\Videos\Main\Discord\Discord%02d.ts `
    -map 4,1 -map 1 -c:v libx264 -r 25 -rc-lookahead 50 -forced-idr 1 -sc_threshold 0 -flags +cgop `
    -force_key_frames "expr:gte(t,n_forced*2)" -preset ultrafast -pix_fmt nv12 -b:v 16K -minrate 16K -maxrate 16K -bufsize 16k `
    -c:a aac -ar 44100 -b:a 384k -ac 2 -af "aresample=async=250" -vsync 1 -ss 00:00:01.071 `
    -max_muxing_queue_size 9999 -f segment -segment_time 600 -segment_wrap 9 -reset_timestamps 1 `
    -segment_format_options max_delay=0 C:\Users\djcim\Videos\Main\Soundboard\Soundboard%02d.ts `
    -map 2:0,2:1 -map 2:1 -c:v h264_nvenc -r 60 -rc-lookahead 120 -forced-idr 1 -strict_gop 1 -sc_threshold 0 -flags +cgop `
    -force_key_frames "expr:gte(t,n_forced*2)" -preset: llhp -pix_fmt nv12 -b:v 250M -minrate 250M -maxrate 250M -bufsize 250M `
    -c:a aac -ar 44100 -b:a 384k -ac 2 -af "atrim=0.086, asetpts=PTS-STARTPTS, aresample=async=250" -vsync 1 -ss 00:00:00.102 `
    -max_muxing_queue_size 9999 -f segment -segment_time 600 -segment_wrap 9 -reset_timestamps 1 `
    -segment_format_options max_delay=0 C:\Users\djcim\Videos\Main\Magewell\Magewell%02d.ts `
    -map 3:0,3:1 -map 3:1 -c:v h264_nvenc -r 60 -rc-lookahead 120 -forced-idr 1 -strict_gop 1 -sc_threshold 0 -flags +cgop `
    -force_key_frames "expr:gte(t,n_forced*2)" -preset: llhp -pix_fmt nv12 -b:v 250M -minrate 250M -maxrate 250M -bufsize 250M `
    -c:a aac -ar 44100 -b:a 384k -ac 2 -af "pan=mono|c0=c0, aresample=async=250" -vsync 1 `
    -max_muxing_queue_size 9999 -f segment -segment_time 600 -segment_wrap 9 -reset_timestamps 1 `
    -segment_format_options max_delay=0 C:\Users\djcim\Videos\Main\Camera\Camera%02d.ts

    EDIT : Also worth mentioning that I only drop frames when starting and ending recording, everything is fine in the middle. Wonder if I could like "ease" the recording in or something ?

    (09/13/2018) : I was able to stop frames from dropping while starting a recording by re-arranging inputs and outputs, however no matter how I list things I still drop frames ending recordings.

  • How to Output Mjpeg from Kokorin Jaffree FFmpeg via UDP to a Localhost Port ?

    14 octobre 2022, par roba

    I have a Java program which displays dual webcams and records them to file in FHD 30fps H264/H265. It uses Sarxos Webcam for the initial setup and display but when recording, it switches to Jaffree FFmpeg. During recording Sarxos Webcam must release its webcam access and cannot display while recording continues.

    


    I have tried recording with Xuggler/Sarxos but Sarxos seems to only access raw video from the webcams which creates limitations in the frame rate and resolution which can be achieved. At 1920x1080 the cameras can only deliver 5 fps raw video.

    


    I am trying to direct mjpeg streams from Jaffree to localports for display purposes during recording but I cannot figure out how to do it.

    


    Simultaneous recording plus sending to a port can be done from the terminal with the following :

    


    ffmpeg -f  dshow  -video_size 1920x1080 -rtbufsize 944640k -framerate 25 -vcodec mjpeg  -i video="Logitech Webcam C930e" -pix_fmt yuv420p -c:v libx264 outFHDx25.mp4 -f mpegts udp://localhost:1234?pkt_size=188&buffer_size=65535


    


    and viewed from the port in a different terminal like this :

    


    ffplay -i udp://localhost:1234


    


    The video which displays is a little blocky compared with the video recorded to file. Any suggestions on how to improve this would be appreciated.

    


    Note that FFPlay is not included in Jaffree FFMpeg.

    


    I would like to send the mjpeg to a port and then read it into the Sarxos Webcam viewer to display while recording is in progress.

    


    The Jaffree Java code for recording the output of one webcam to file follows. It takes the mjpeg/yuv422p output from the webcam and normally encodes it to file as H264/yuv420p :

    


    public static FFmpeg createTestFFmpeg() {
      String camera1Ref = "video=" + cam1Vid + ":audio=" + cam1Aud;
          return FFmpeg.atPath()
              .addArguments("-f", "dshow")  //selects dshow for Windows
              .addArguments("-video_size", resString)  //video resolution  eg 1920x1080          
              .addArguments("-rtbufsize", rtBufResultString) 
              .addArguments("-thread_queue_size", threadQ)
              .addArguments("-framerate", fpsString)   // capture frame rate  eg 30fps         
              .addArguments(codec, vidString)  //set capture encode mode from camera
              .addArgument(audio) //on or off
              .addArguments("-i", camera1Ref)   // name of camera to capture
              .addArguments("-pix_fmt", pixFmt)
              .addArguments("-c:v", enc2)  //eg enc2 = "libx264", "h264_nvenc"
              .addArguments(enc3, enc4)  //enc3 = "-crf", enc4 = "20"
              .addArguments(enc5, enc6)  //enc5 = "-gpu:v", enc6 = "0"
              .addArguments(enc7, enc8)  //enc7 = "-cq:v", enc8 = "20"
              .addArguments(enc9, enc10)  //enc9 = "-rc:v", enc10 = "vbr"
              .addArguments(enc11, enc12)  //enc11 = "-tune:v", enc12 = "ll"
              .addArguments(enc13, enc14)  //enc13 = "-preset:v", enc14 = "p1" 
              .addArguments(enc15,enc16)  //enc15 = "-b:v", enc16 = "0"
              .addArguments(enc17, enc18)  //enc17 = "-maxrate:v", enc18 = "5000k"
              .addArguments(enc19, enc20)  //enc19 = "-bufsize:v", enc20 = "5000k"
              .addArguments(enc21, enc22)  //enc21 = "-profile:v", enc22 = "main"
              .addArgument(noFFStats) //"-nostats"{, stops logging progress/statistics
              .addArguments("-loglevel", ffLogLevel)  //error logging
              .addArgument(bannerResultString)  // "-hide_banner"
              .addArguments("-rtbufsize", rtBufResultString) 
              .setOverwriteOutput(true)   // overwrite filename if it exists  Boolean = overwriteFile
              .addOutput(
                  UrlOutput
                      .toUrl(filePathL))                    
              .setProgressListener(new ProgressListener(){
                  @Override
                  public void onProgress(FFmpegProgress progress){
                     if(ffProgress){ 
                          System.out.println(progress);
                          
                     } 
                    }
            } );
            
   }


    


    How and where do I add the code to output mjpeg via UDP to a localport while simultaneously writing H264 to a file, and what is the syntax ? I am sure it must be simple but I seem to have tried all of the permutations without success. I can write to a file OR I can output to a port but I cannot do both.