
Recherche avancée
Autres articles (61)
-
MediaSPIP Core : La Configuration
9 novembre 2010, parMediaSPIP Core fournit par défaut trois pages différentes de configuration (ces pages utilisent le plugin de configuration CFG pour fonctionner) : une page spécifique à la configuration générale du squelettes ; une page spécifique à la configuration de la page d’accueil du site ; une page spécifique à la configuration des secteurs ;
Il fournit également une page supplémentaire qui n’apparait que lorsque certains plugins sont activés permettant de contrôler l’affichage et les fonctionnalités spécifiques (...) -
Amélioration de la version de base
13 septembre 2013Jolie sélection multiple
Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...) -
Emballe médias : à quoi cela sert ?
4 février 2011, parCe plugin vise à gérer des sites de mise en ligne de documents de tous types.
Il crée des "médias", à savoir : un "média" est un article au sens SPIP créé automatiquement lors du téléversement d’un document qu’il soit audio, vidéo, image ou textuel ; un seul document ne peut être lié à un article dit "média" ;
Sur d’autres sites (4028)
-
I tried to play the audio on Alexa skill from my S3 Bucket, from the test tab, **it show but in fact, I can't hear any sound
19 avril 2022, par Siti MaynaSo I tried to play the audio on Alexa skill from my S3 Bucket, from the test tab, it show but in fact, I can't hear any sound. Another fact is, that I tried to use the sample audio from https://developer.amazon.com/en-US/docs/alexa/custom-skills/ask-soundlibrary.html and it is worked, but why it won't work when it comes from my own S3 Bucket ?


Notes :


I've tried to test the skill using my mobile phone also.


I've tried to encode the audio using FFmpeg.


I've tried to use Jovo to convert the audio. https://v3.jovo.tech/audio-converter


I don't know how to fix this error.


There is no error message on cloud watch.


Assumptions :
There is some problem related to the audio resources or there is more set to play audio from S3 Bucket since the sample audio is working.


Steps to reproduce :




Build the interaction model






Encode the audio to make it Alexa skill friendly (fulfill the requirements, like sample rate, etc), I used and tried all of these :




A :


ffmpeg -i -ac 2 -codec:a libmp3lame -b:a 48k -ar 16000 -write_xing 0 



B :


ffmpeg -i -ac 2 -codec:a libmp3lame -b:a 48k -ar 24000 -write_xing 0 



C :


ffmpeg -y -i input.mp3 -ar 16000 -ab 48k -codec:a libmp3lame -ac 1 output.mp3





Upload the audio resources on S3Bucket
Audio sample on s3 storage but none of them are produce any sounds






Use the link and insert it to APLA.json





 {
 "type": "APLA",
 "version": "0.91",
 "description": "Simple document that generates speech",
 "mainTemplate": {
 "parameters": [
 "payload"
 ],
 "type": "Sequencer",
 "items": [
 {
 "type": "Audio",
 "source": "https://72578561-d9d8-47b4-811c-cafbcbc5ddb9-us-east-1.s3.amazonaws.com/Media/one-small-step-alexa-24.mp3"
 }
 ]
 }
 }




notes : I change the link sources based on audio that I tried.




the intent on lambda_function.py :




def _load_apl_document(file_path):
 # type: (str) -> Dict[str, Any]
 """Load the apl json document at the path into a dict object."""
 with open(file_path) as f:
 return json.load(f)

class LaunchRequestHandler(AbstractRequestHandler):
 """Handler for Skill Launch."""
 def can_handle(self, handler_input):
 # type: (HandlerInput) -> bool

 return ask_utils.is_request_type("LaunchRequest")(handler_input)

 def handle(self, handler_input):
 # type: (HandlerInput) -> Response
 logger.info("In LaunchRequestHandler")

 # type: (HandlerInput) -> Response
 speak_output = "Hello World!"
 # .ask("add a reprompt if you want to keep the session open for the user to respond")

 return (
 handler_input.response_builder
 #.speak(speak_output)
 .add_directive(
 RenderDocumentDirective(
 token="pagerToken",
 document=_load_apl_document("APLA.json"),
 datasources={}
 )
 )
 .response
 )





Deploy






Test it






The result of the test on my end :

The response for testing




the JSON response :


{
 "body": {
 "version": "1.0",
 "response": {
 "directives": [
 {
 "type": "Alexa.Presentation.APLA.RenderDocument",
 "token": "pagerToken",
 "document": {
 "type": "APLA",
 "version": "0.91",
 "description": "Simple document that generates speech",
 "mainTemplate": {
 "parameters": [
 "payload"
 ],
 "type": "Sequencer",
 "items": [
 {
 "type": "Audio",
 "source": "https://72578561-d9d8-47b4-811c-cafbcbc5ddb9-us-east-1.s3.amazonaws.com/Media/one-small-step-alexa-24.mp3"
 }
 ]
 }
 },
 "datasources": {}
 }
 ],
 "type": "_DEFAULT_RESPONSE"
 },
 "sessionAttributes": {},
 "userAgent": "ask-python/1.16.1 Python/3.7.12"
 }
}





On my cloud Watch :
Cloud Watch




-
swscale : aarch64 : Optimize the final summation in the hscale routine
20 avril 2022, par Martin Storsjöswscale : aarch64 : Optimize the final summation in the hscale routine
Before : Cortex A53 A72 A73 Graviton 2 Graviton 3
hscale_8_to_15_width8_neon : 8273.0 4602.5 4289.5 2429.7 1629.1
hscale_8_to_15_width16_neon : 12405.7 6803.0 6359.0 3549.0 2378.4
hscale_8_to_15_width32_neon : 21258.7 11491.7 11469.2 5797.2 3919.6
hscale_8_to_15_width40_neon : 25652.0 14173.7 12488.2 6893.5 4810.4After :
hscale_8_to_15_width8_neon : 7633.0 3981.5 3350.2 1980.7 1261.1
hscale_8_to_15_width16_neon : 11666.7 5951.0 5512.0 3080.7 2131.4
hscale_8_to_15_width32_neon : 20900.7 10733.2 9481.7 5275.2 3862.1
hscale_8_to_15_width40_neon : 24826.0 13536.2 11502.0 6397.2 4731.9Thus, this gives overall a 8-29% speedup for the smaller filter
sizes, around 1-8% for the larger filter sizes.Inspired by a patch by Jonathan Swinney <jswinney@amazon.com>.
Signed-off-by : Martin Storsjö <martin@martin.st>
-
How to "extend" aws docker base image (.net core from scratch) by ... libs/ubuntu/ffmpeg ?
26 avril 2022, par Nigrimmisti would like to use AWS Lambda through the image containers using .net core 3.1 and it is works fine for me in simplest code case. But i stucked with next scenario :


By default, aws provide base image with .net core with aws libs based on "from scratch". So as i know, it minimal Linux that does not contains even package manager.


I need to work with ffmpeg in the code, but to do it i need to install few packages and ... fmpeg. I have working code on image


FROM mcr.microsoft.com/dotnet/runtime:3.1-bionic



It is ubuntu with .net core runtime. But what is the right strategic in case of AWS Lambda image ? How can i ... merge them ?.


Have few ideas, but not sure :


- 

- use as is
FROM public.ecr.aws/lambda/dotnet:core3.1
and try to install package manager, all depenendencies to use ffmpeg and so on ? - Use
mcr.microsoft.com/dotnet/runtime:3.1-bionic
, somehow add required by amazon dependencies (how ? download content and attach from local ?) and configure it to run in Lambda runtime ? - ... ?








Will be glad to hear where is the solution here. Thanks !


- use as is