
Recherche avancée
Médias (1)
-
The Slip - Artworks
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
Autres articles (19)
-
(Dés)Activation de fonctionnalités (plugins)
18 février 2011, parPour gérer l’ajout et la suppression de fonctionnalités supplémentaires (ou plugins), MediaSPIP utilise à partir de la version 0.2 SVP.
SVP permet l’activation facile de plugins depuis l’espace de configuration de MediaSPIP.
Pour y accéder, il suffit de se rendre dans l’espace de configuration puis de se rendre sur la page "Gestion des plugins".
MediaSPIP est fourni par défaut avec l’ensemble des plugins dits "compatibles", ils ont été testés et intégrés afin de fonctionner parfaitement avec chaque (...) -
Activation de l’inscription des visiteurs
12 avril 2011, parIl est également possible d’activer l’inscription des visiteurs ce qui permettra à tout un chacun d’ouvrir soit même un compte sur le canal en question dans le cadre de projets ouverts par exemple.
Pour ce faire, il suffit d’aller dans l’espace de configuration du site en choisissant le sous menus "Gestion des utilisateurs". Le premier formulaire visible correspond à cette fonctionnalité.
Par défaut, MediaSPIP a créé lors de son initialisation un élément de menu dans le menu du haut de la page menant (...) -
Support de tous types de médias
10 avril 2011Contrairement à beaucoup de logiciels et autres plate-formes modernes de partage de documents, MediaSPIP a l’ambition de gérer un maximum de formats de documents différents qu’ils soient de type : images (png, gif, jpg, bmp et autres...) ; audio (MP3, Ogg, Wav et autres...) ; vidéo (Avi, MP4, Ogv, mpg, mov, wmv et autres...) ; contenu textuel, code ou autres (open office, microsoft office (tableur, présentation), web (html, css), LaTeX, Google Earth) (...)
Sur d’autres sites (3797)
-
WebM Cabal
I traveled to a secret clubhouse today to take part in a clandestine meeting to discuss exactly how WebM will rule over all that you see and hear on the web. I can’t really talk about it. But I can show you the cool hat I got :
Yeah, you’re jealous.
The back of the hat has an Easter egg for video codec nerds– the original Duck Corporation logo (On2′s original name) :
Former employees of On2 (now Googlers) were well-represented. It was an emotional day of closure as I met the person — the only person to date — who contacted me with a legal threat so many years ago. He still remembered me too.
I met a lot of people involved in creating various Duck and On2 codecs and learned a lot of history and lore behind then– history I hope to be able to document one day.
I’m glad I got that first rough draft of a toy VP8 encoder done in time for the meeting. It was the subject of much mirth.
-
Typesetting
Ever had the situation where you have a piece of string which you need to overlay on an image ? Maybe a situation where the area reserved for the string is known in pixels but you need to know the font size to fill most of the area ? Think no more !
Here is a small example of how to fit a certain piece of a string on to an area of which you know the width and the height or only the width. The magic happens through the ImageMagick CAPTION : format. You can see from the example images how the parameters actually affect the image.
-
< ?php
-
-
/* How wide is our image */
-
$image_width = 200 ;
-
-
/* Give zero for autocalculating the height */
-
$image_height = 200 ;
-
-
/* Specify the text */
-
$text = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
-
Mauris lectus mi, mattis non, euismod vel, sagittis nec, ipsum." ;
-
-
/* Instanciate imagick */
-
$im = new Imagick() ;
-
-
/* Create new image using caption : pseudo format */
-
$im->newPseudoImage( $image_width, $image_height, "caption :" . $text ) ;
-
-
/* Put 1px border around the image */
-
$im->borderImage( ’black’, 1, 1 ) ;
-
-
/* PNG format */
-
$im->setImageFormat( "png") ;
-
-
/* Output */
-
header( "Content-Type : image/png" ) ;
-
echo $im ;
-
-
?>
Here is image with width 100 and height 0 :
Width 100 Height 50 :
Width 200 Height 200 (as you can see the font size is now larger) :
-
-
Inside WebM Technology : VP8 Intra and Inter Prediction
20 juillet 2010, par noreply@blogger.com (Lou Quillio)Continuing our series on WebM technology, I will discuss the use of prediction methods in the VP8 video codec, with special attention to the TM_PRED and SPLITMV modes, which are unique to VP8.First, some background. To encode a video frame, block-based codecs such as VP8 first divide the frame into smaller segments called macroblocks. Within each macroblock, the encoder can predict redundant motion and color information based on previously processed blocks. The redundant data can be subtracted from the block, resulting in more efficient compression.
Image by Fido Factor, licensed under Creative Commons Attribution License.
Based on a work at www.flickr.comA VP8 encoder uses two classes of prediction :- Intra prediction uses data within a single video frame
- Inter prediction uses data from previously encoded frames
The residual signal data is then encoded using other techniques, such as transform coding.VP8 Intra Prediction ModesVP8 intra prediction modes are used with three types of macroblocks :- 4x4 luma
- 16x16 luma
- 8x8 chroma
Four common intra prediction modes are shared by these macroblocks :- H_PRED (horizontal prediction). Fills each column of the block with a copy of the left column, L.
- V_PRED (vertical prediction). Fills each row of the block with a copy of the above row, A.
- DC_PRED (DC prediction). Fills the block with a single value using the average of the pixels in the row above A and the column to the left of L.
- TM_PRED (TrueMotion prediction). A mode that gets its name from a compression technique developed by On2 Technologies. In addition to the row A and column L, TM_PRED uses the pixel P above and to the left of the block. Horizontal differences between pixels in A (starting from P) are propagated using the pixels from L to start each row.
For 4x4 luma blocks, there are six additional intra modes similar to V_PRED and H_PRED, but correspond to predicting pixels in different directions. These modes are outside the scope of this post, but if you want to learn more see the VP8 Bitstream Guide.As mentioned above, the TM_PRED mode is unique to VP8. The following figure uses an example 4x4 block of pixels to illustrate how the TM_PRED mode works :Where C, As and Ls represent reconstructed pixel values from previously coded blocks, and X00 through X33 represent predicted values for the current block. TM_PRED uses the following equation to calculate Xij :Xij = Li + Aj - C (i, j=0, 1, 2, 3)Although the above example uses a 4x4 block, the TM_PRED mode for 8x8 and 16x16 blocks works in the same fashion.TM_PRED is one of the more frequently used intra prediction modes in VP8, and for common video sequences it is typically used by 20% to 45% of all blocks that are intra coded. Overall, together with other intra prediction modes, TM_PRED helps VP8 to achieve very good compression efficiency, especially for key frames, which can only use intra modes (key frames by their very nature cannot refer to previously encoded frames).VP8 Inter Prediction ModesIn VP8, inter prediction modes are used only on inter frames (non-key frames). For any VP8 inter frame, there are typically three previously coded reference frames that can be used for prediction. A typical inter prediction block is constructed using a motion vector to copy a block from one of the three frames. The motion vector points to the location of a pixel block to be copied. In most video compression schemes, a good portion of the bits are spent on encoding motion vectors ; the portion can be especially large for video encoded at lower datarates.Like previous VPx codecs, VP8 encodes motion vectors very efficiently by reusing vectors from neighboring macroblocks (a macroblock includes one 16x16 luma block and two 8x8 chroma blocks). VP8 uses a similar strategy in the overall design of inter prediction modes. For example, the prediction modes "NEAREST" and "NEAR" make use of last and second-to-last, non-zero motion vectors from neighboring macroblocks. These inter prediction modes can be used in combination with any of the three different reference frames.In addition, VP8 has a very sophisticated, flexible inter prediction mode called SPLITMV. This mode was designed to enable flexible partitioning of a macroblock into sub-blocks to achieve better inter prediction. SPLITMV is very useful when objects within a macroblock have different motion characteristics. Within a macroblock coded using SPLITMV mode, each sub-block can have its own motion vector. Similar to the strategy of reusing motion vectors at the macroblock level, a sub-block can also use motion vectors from neighboring sub-blocks above or left to the current block. This strategy is very flexible and can effectively encode any shape of sub-macroblock partitioning, and does so efficiently. Here is an example of a macroblock with 16x16 luma pixels that is partitioned to 16 4x4 blocks :where New represents a 4x4 bock coded with a new motion vector, and Left and Above represent a 4x4 block coded using the motion vector from the left and above, respectively. This example effectively partitions the 16x16 macroblock into 3 different segments with 3 different motion vectors (represented below by 1, 2 and 3) :Through effective use of intra and inter prediction modes, WebM encoder implementations can achieve great compression quality on a wide range of source material. If you want to delve further into VP8 prediction modes, read the VP8 Bitstream Guide or examine the reconintra.c and rdopt.c files in the VP8 source tree.Yaowu Xu, Ph.D. is a codec engineer at Google.