
Recherche avancée
Médias (91)
-
999,999
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
The Slip - Artworks
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
-
Demon seed (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
The four of us are dying (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Corona radiata (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Lights in the sky (wav version)
26 septembre 2011, par
Mis à jour : Avril 2013
Langue : English
Type : Audio
Autres articles (29)
-
Contribute to a better visual interface
13 avril 2011MediaSPIP is based on a system of themes and templates. Templates define the placement of information on the page, and can be adapted to a wide range of uses. Themes define the overall graphic appearance of the site.
Anyone can submit a new graphic theme or template and make it available to the MediaSPIP community. -
Déploiements possibles
31 janvier 2010, parDeux types de déploiements sont envisageable dépendant de deux aspects : La méthode d’installation envisagée (en standalone ou en ferme) ; Le nombre d’encodages journaliers et la fréquentation envisagés ;
L’encodage de vidéos est un processus lourd consommant énormément de ressources système (CPU et RAM), il est nécessaire de prendre tout cela en considération. Ce système n’est donc possible que sur un ou plusieurs serveurs dédiés.
Version mono serveur
La version mono serveur consiste à n’utiliser qu’une (...) -
Les tâches Cron régulières de la ferme
1er décembre 2010, parLa gestion de la ferme passe par l’exécution à intervalle régulier de plusieurs tâches répétitives dites Cron.
Le super Cron (gestion_mutu_super_cron)
Cette tâche, planifiée chaque minute, a pour simple effet d’appeler le Cron de l’ensemble des instances de la mutualisation régulièrement. Couplée avec un Cron système sur le site central de la mutualisation, cela permet de simplement générer des visites régulières sur les différents sites et éviter que les tâches des sites peu visités soient trop (...)
Sur d’autres sites (5842)
-
FFMPEG convert videos using Automator [closed]
8 janvier, par FilipProI'm trying to use Apple Automator (v2.10, Sonoma 14.7.1, Apple M1) to select a folder and convert all MP4 files to WMV files using FFMPEG. The user is supposed to export files from Final Cut Pro in MP4, put them in a folder of their choice and then start the automation by having to select the folder where MP4 files are saved.


FFMPEG is installed via Homebrew and the installation folder was found via "which ffmpeg" ( /opt/homebrew/bin/ffmpeg ).


This is the worklow I currently have : Full Automator Workflow


- 

-
Run AppleScript


- 

- 

on run {input, parameters}

 tell application "System Events"
 activate
 return text returned of (display dialog "Enter administrator password" default answer "" with hidden answer)
 end tell

 return input
end run







- 

-
Run Shell script (/bin/zsh, no input required)


- 

- 

sudo -S id -u







- 

-
Ask for Finder elements


- 

- Select folder, starting from "Downloads" folder, no multiple selection




-
Run Shell script (/bin/zsh, input as arguments)


- 

- 

cd "$1"

for f in *.mp4; do
 osascript -e "display notification \"Converting file: $f \" with title \"Video Conversion\""
 sudo /opt/homebrew/bin/ffmpeg -i "$f" -c:v wmv2 -b:v 3000k -c:a wmav2 -b:c 192k "${f%.*}.wmv"
 if [ $? -eq 0 ]; then
 osascript -e "display notification \"Converted file: $f \" with title \"Video Conversion\""
 else
 osascript -e "display notification \"Error converting file: $f \" with title \"Video Conversion\""
 fi
done







- 











The actual script (step 4) works perfectly if handtyped in Terminal but FFMPEG return "Error opening output files : Invalid argument" when run within the Automator workflow.


This is the output of step 4 (I added *REDACTED FOR PRIVACY* instead of actual filenames) :


ffmpeg version 7.1 Copyright (c) 2000-2024 the FFmpeg developers
built with Apple clang version 16.0.0 (clang-1600.0.26.4)
configuration: --prefix=/opt/homebrew/Cellar/ffmpeg/7.1_3 --enable-shared --enable-pthreads --enable-version3 --cc=clang --host-cflags= --host-ldflags='-Wl,-ld_classic' --enable-ffplay --enable-gnutls --enable-gpl --enable-libaom --enable-libaribb24 --enable-libbluray --enable-libdav1d --enable-libharfbuzz --enable-libjxl --enable-libmp3lame --enable-libopus --enable-librav1e --enable-librist --enable-librubberband --enable-libsnappy --enable-libsrt --enable-libssh --enable-libsvtav1 --enable-libtesseract --enable-libtheora --enable-libvidstab --enable-libvmaf --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libxvid --enable-lzma --enable-libfontconfig --enable-libfreetype --enable-frei0r --enable-libass --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-libspeex --enable-libsoxr --enable-libzmq --enable-libzimg --disable-libjack --disable-indev=jack --enable-videotoolbox --enable-audiotoolbox --enable-neon
libavutil 59. 39.100 / 59. 39.100
libavcodec 61. 19.100 / 61. 19.100
libavformat 61. 7.100 / 61. 7.100
libavdevice 61. 3.100 / 61. 3.100
libavfilter 10. 4.100 / 10. 4.100
libswscale 8. 3.100 / 8. 3.100
libswresample 5. 3.100 / 5. 3.100
libpostproc 58. 3.100 / 58. 3.100
Input #0, mov,mp4,m4a,3gp,3g2,mj2, from '*REDACTED FOR PRIVACY*':
Metadata:
major_brand : mp42
minor_version : 1
compatible_brands: isommp41mp42
creation_time : 2024-12-30T17:06:35.000000Z
Duration: 00:00:15.00, start: 0.000000, bitrate: 5122 kb/s
Stream #0:0[0x1](und): Video: h264 (Main) (avc1 / 0x31637661), yuv420p(tv, bt709, progressive), 1920x1080, 5119 kb/s, SAR 1:1 DAR 16:9, 24 fps, 24 tbr, 24k tbn (default)
Metadata:
creation_time : 2024-12-30T17:06:35.000000Z
handler_name : Core Media Video
vendor_id : [0][0][0][0]
Trailing garbage at the end of a stream specifier: c
Error opening output file *REDACTED FOR PRIVACY*.
Error opening output files: Invalid argument”



-
-
javacv and moviepy comparison for video generation
15 septembre 2024, par VikramI am trying to generate video using images, where image have some overlays text and png icons. I am using javacv library for this.
Final output video seems pixelated, i don't understand what is it since i do not have video processing domain knowledge, i am beginner to this.
I know that video bitrate and choice of video encoder are important factor which contributes to video quality and there are many more factors too.


I am providing you two output for comparison, one of them is generated using javacv and another one is from moviepy library


Please watch it in full screen since the problem i am talking about only gets highlighted in full screen, you will see the pixel dancing in javacv generated video, but python output seems stable


https://imgur.com/a/aowNnKg - javacv generated


https://imgur.com/a/eiLXrbk - Moviepy generated


I am using same encoder in both of the implementation


Encoder - libx264
bitrate - 
 800 Kbps for javacv 
 500 Kbps for moviepy

frame rate - 24fps for both of them

output video size -> 
 7MB (javacv)
 5MB (Moviepy)





generated output size from javacv is bigger then moviepy generated video.


here is my java configuration for FFmpegFrameRecorder


FFmpegFrameRecorder recorder = new FFmpegFrameRecorder(this.outputPath, 
 this.screensizeX, this.screensizeY);
 if(this.videoCodecName!=null && "libx264".equals(this.videoCodecName)) {
 recorder.setVideoCodec(avcodec.AV_CODEC_ID_H264);
 }
 recorder.setFormat("mp4"); 
 recorder.setPixelFormat(avutil.AV_PIX_FMT_YUV420);
 recorder.setVideoBitrate(800000);
 recorder.setImageWidth(this.screensizeX);
 recorder.setFrameRate(24);




and here is python configuration for writing video file


Full_final_clip.write_videofile(
 f"{video_folder_path}/{FILE_ID}_INTERMEDIATE.mp4",
 codec="libx264",
 audio_codec="aac",
 temp_audiofile=f"{FILE_ID}_INTER_temp-audio.m4a",
 remove_temp=True,
 fps=24,
 )




as you can see i am not specifying bitrate in python, but i checked that bitrate of final output is around 500 kbps, which is lower then what i specified in java, yet java generated video quality seems poor.


I have tried setting crf value also , but it seems it does not have any impact when used.


increasing bitrate improve quality somewhat but at the cost of file size, still generated output seems pixelated.


Can someone please highlight what might be the issue, and how python is generating better quality video, when both of the libraries use ffmpeg at the backend.


Edit 1 : also, I am adding code which is being used to make zoom animation for continuous frames, As somewhere i read that this might be the cause for pixel jitter, please see and let me know if there is any improvement we can do to remove pixel jittering


private Mat applyZoomEffect(Mat frame, int currentFrame, long effectFrames, int width, int height, String mode, String position, double speed) {
 long totalFrames = effectFrames;
 double i = currentFrame;
 if ("out".equals(mode)) {
 i = totalFrames - i;
 }
 double zoom = 1 + (i * ((0.1 * speed) / totalFrames));

 double originalCenterX = width/2.0;
 double originalCenterY = height/2.0;
 

 // Resize image
 //opencv_imgproc.resize(frame, resizedMat, new Size(newWidth, newHeight));

 // Determine crop region based on position
 double x = 0, y = 0;
 switch (position.toLowerCase()) {
 case "center":
 // Adjusting for center zoom
 x = originalCenterX - originalCenterX * zoom;
 y = originalCenterY - originalCenterY * zoom;
 
 x= (width-(width*zoom))/2.0;
 y= (height-(height*zoom))/2.0;
 break;
 }

 double[][] rowData = {{zoom, 0, x},{0,zoom,y}};

 double[] flatData = flattenArray(rowData);

 // Create a DoublePointer from the flattened array
 DoublePointer doublePointer = new DoublePointer(flatData);

 // Create a Mat object with two rows and three columns
 Mat mat = new Mat(2, 3, org.bytedeco.opencv.global.opencv_core.CV_64F); // CV_64F is for double type

 // Put the data into the Mat object
 mat.data().put(doublePointer);
 Mat transformedFrame = new Mat();
 opencv_imgproc.warpAffine(frame, transformedFrame, mat, new Size(frame.cols(), frame.rows()),opencv_imgproc.INTER_LANCZOS4,0,new Scalar(0,0,0,0));
 return transformedFrame;
 }



-
how to resolve pixel jittering in javacv generated video
16 septembre 2024, par VikramI am trying to generate video using images, where image have some overlays text and png icons. I am using javacv library for this.
Final output video seems pixelated, i don't understand what is it since i do not have video processing domain knowledge, i am beginner to this.
I know that video bitrate and choice of video encoder are important factor which contributes to video quality and there are many more factors too.


I am providing you two output for comparison, one of them is generated using javacv and another one is from moviepy library


Please watch it in full screen since the problem i am talking about only gets highlighted in full screen, you will see the pixel dancing in javacv generated video, but python output seems stable


https://imgur.com/a/aowNnKg - javacv generated


https://imgur.com/a/eiLXrbk - Moviepy generated


I am using same encoder in both of the implementation


Encoder - libx264
bitrate - 
 800 Kbps for javacv 
 500 Kbps for moviepy

frame rate - 24fps for both of them

output video size -> 
 7MB (javacv)
 5MB (Moviepy)





generated output size from javacv is bigger then moviepy generated video.


here is my java configuration for FFmpegFrameRecorder


FFmpegFrameRecorder recorder = new FFmpegFrameRecorder(this.outputPath, 
 this.screensizeX, this.screensizeY);
 if(this.videoCodecName!=null && "libx264".equals(this.videoCodecName)) {
 recorder.setVideoCodec(avcodec.AV_CODEC_ID_H264);
 }
 recorder.setFormat("mp4"); 
 recorder.setPixelFormat(avutil.AV_PIX_FMT_YUV420);
 recorder.setVideoBitrate(800000);
 recorder.setImageWidth(this.screensizeX);
 recorder.setFrameRate(24);




and here is python configuration for writing video file


Full_final_clip.write_videofile(
 f"{video_folder_path}/{FILE_ID}_INTERMEDIATE.mp4",
 codec="libx264",
 audio_codec="aac",
 temp_audiofile=f"{FILE_ID}_INTER_temp-audio.m4a",
 remove_temp=True,
 fps=24,
 )




as you can see i am not specifying bitrate in python, but i checked that bitrate of final output is around 500 kbps, which is lower then what i specified in java, yet java generated video quality seems poor.


I have tried setting crf value also , but it seems it does not have any impact when used.


increasing bitrate improve quality somewhat but at the cost of file size, still generated output seems pixelated.


Can someone please highlight what might be the issue, and how python is generating better quality video, when both of the libraries use ffmpeg at the backend.


Edit 1 : also, I am adding code which is being used to make zoom animation for continuous frames, As somewhere i read that this might be the cause for pixel jitter, please see and let me know if there is any improvement we can do to remove pixel jittering


private Mat applyZoomEffect(Mat frame, int currentFrame, long effectFrames, int width, int height, String mode, String position, double speed) {
 long totalFrames = effectFrames;
 double i = currentFrame;
 if ("out".equals(mode)) {
 i = totalFrames - i;
 }
 double zoom = 1 + (i * ((0.1 * speed) / totalFrames));

 double originalCenterX = width/2.0;
 double originalCenterY = height/2.0;
 

 // Resize image
 //opencv_imgproc.resize(frame, resizedMat, new Size(newWidth, newHeight));

 // Determine crop region based on position
 double x = 0, y = 0;
 switch (position.toLowerCase()) {
 case "center":
 // Adjusting for center zoom
 x = originalCenterX - originalCenterX * zoom;
 y = originalCenterY - originalCenterY * zoom;
 
 x= (width-(width*zoom))/2.0;
 y= (height-(height*zoom))/2.0;
 break;
 }

 double[][] rowData = {{zoom, 0, x},{0,zoom,y}};

 double[] flatData = flattenArray(rowData);

 // Create a DoublePointer from the flattened array
 DoublePointer doublePointer = new DoublePointer(flatData);

 // Create a Mat object with two rows and three columns
 Mat mat = new Mat(2, 3, org.bytedeco.opencv.global.opencv_core.CV_64F); // CV_64F is for double type

 // Put the data into the Mat object
 mat.data().put(doublePointer);
 Mat transformedFrame = new Mat();
 opencv_imgproc.warpAffine(frame, transformedFrame, mat, new Size(frame.cols(), frame.rows()),opencv_imgproc.INTER_LANCZOS4,0,new Scalar(0,0,0,0));
 return transformedFrame;
 }