
Recherche avancée
Médias (1)
-
Bug de détection d’ogg
22 mars 2013, par
Mis à jour : Avril 2013
Langue : français
Type : Video
Autres articles (72)
-
List of compatible distributions
26 avril 2011, parThe table below is the list of Linux distributions compatible with the automated installation script of MediaSPIP. Distribution nameVersion nameVersion number Debian Squeeze 6.x.x Debian Weezy 7.x.x Debian Jessie 8.x.x Ubuntu The Precise Pangolin 12.04 LTS Ubuntu The Trusty Tahr 14.04
If you want to help us improve this list, you can provide us access to a machine whose distribution is not mentioned above or send the necessary fixes to add (...) -
Le plugin : Podcasts.
14 juillet 2010, parLe problème du podcasting est à nouveau un problème révélateur de la normalisation des transports de données sur Internet.
Deux formats intéressants existent : Celui développé par Apple, très axé sur l’utilisation d’iTunes dont la SPEC est ici ; Le format "Media RSS Module" qui est plus "libre" notamment soutenu par Yahoo et le logiciel Miro ;
Types de fichiers supportés dans les flux
Le format d’Apple n’autorise que les formats suivants dans ses flux : .mp3 audio/mpeg .m4a audio/x-m4a .mp4 (...) -
Contribute to translation
13 avril 2011You can help us to improve the language used in the software interface to make MediaSPIP more accessible and user-friendly. You can also translate the interface into any language that allows it to spread to new linguistic communities.
To do this, we use the translation interface of SPIP where the all the language modules of MediaSPIP are available. Just subscribe to the mailing list and request further informantion on translation.
MediaSPIP is currently available in French and English (...)
Sur d’autres sites (5443)
-
lavc/mjpegdec : speed up scan data copy
26 janvier 2016, par Matthieu Bouron -
avutil/mathematics : speed up av_gcd by using Stein’s binary GCD algorithm
11 octobre 2015, par Ganesh Ajjanagaddeavutil/mathematics : speed up av_gcd by using Stein’s binary GCD algorithm
This uses Stein’s binary GCD algorithm :
https://en.wikipedia.org/wiki/Binary_GCD_algorithm
to get a roughly 4x speedup over Euclidean GCD on standard architectures
with a compiler intrinsic for ctzll, and a roughly 2x speedup otherwise.
At the moment, the compiler intrinsic is used on GCC and Clang due to
its easy availability.Quick note regarding overflow : yes, subtractions on int64_t can, but the
llabs takes care of that. The llabs is also guaranteed to be safe, with
no annoying INT64_MIN business since INT64_MIN being a power of 2, is
shifted down before being sent to llabs.The binary GCD needs ff_ctzll, an extension of ff_ctz for long long (int64_t). On
GCC, this is provided by a built-in. On Microsoft, there is a
BitScanForward64 analog of BitScanForward that should work ; but I can’t confirm.
Apparently it is not available on 32 bit builds ; so this may or may not
work correctly. On Intel, per the documentation there is only an
intrinsic for _bit_scan_forward and people have posted on forums
regarding _bit_scan_forward64, but often their documentation is
woeful. Again, I don’t have it, so I can’t test.As such, to be safe, for now only the GCC/Clang intrinsic is added, the rest
use a compiled version based on the De-Bruijn method of Leiserson et al :
http://supertech.csail.mit.edu/papers/debruijn.pdf.Tested with FATE, sample benchmark (x86-64, GCC 5.2.0, Haswell)
with a START_TIMER and STOP_TIMER in libavutil/rationsl.c, followed by a
make fate.aac-am00_88.err :
builtin :
714 decicycles in av_gcd, 4095 runs, 1 skipsde-bruijn :
1440 decicycles in av_gcd, 4096 runs, 0 skipsprevious :
2889 decicycles in av_gcd, 4096 runs, 0 skipsSigned-off-by : Ganesh Ajjanagadde <gajjanagadde@gmail.com>
Signed-off-by : Michael Niedermayer <michael@niedermayer.cc> -
How to estimate bandwidth / speed requirements for real-time streaming video ?
19 juin 2016, par Vivek SethFor a project I’m working on, I’m trying to stream video to an iPhone through its headphone jack. My estimated bitrate is about 200kbps (If i’m wrong about this, please ignore that).
I’d like to squeeze as much performance out of this bitrate as possible and sound is not important for me, only video. My understanding is that to stream a a real-time video I will need to encode it with some codec on-the-fly and send compressed frames to the iPhone for it to decode and render. Based on my research, it seems that H.265 is one of the most space efficient codecs available so i’m considering using that.
Assuming my basic understanding of live streaming is correct, how would I estimate the FPS I could achieve for a given resolution using the H.265 codec ?
The best solution I can think of it to take a video file, encode it with H.265 and trim it to 1 minute of length to see how large the file is. The issue I see with this approach is that I think my calculations would include some overhead from the video container format (AVI, MKV, etc) and from the audio channels that I don’t care about.