Recherche avancée

Médias (0)

Mot : - Tags -/content

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (82)

  • Ajouter des informations spécifiques aux utilisateurs et autres modifications de comportement liées aux auteurs

    12 avril 2011, par

    La manière la plus simple d’ajouter des informations aux auteurs est d’installer le plugin Inscription3. Il permet également de modifier certains comportements liés aux utilisateurs (référez-vous à sa documentation pour plus d’informations).
    Il est également possible d’ajouter des champs aux auteurs en installant les plugins champs extras 2 et Interface pour champs extras.

  • Problèmes fréquents

    10 mars 2010, par

    PHP et safe_mode activé
    Une des principales sources de problèmes relève de la configuration de PHP et notamment de l’activation du safe_mode
    La solution consiterait à soit désactiver le safe_mode soit placer le script dans un répertoire accessible par apache pour le site

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

Sur d’autres sites (11824)

  • Playing With Emscripten and ASM.js

    1er mars 2014, par Multimedia Mike — General

    The last 5 years or so have provided a tremendous amount of hype about the capabilities of JavaScript. I think it really kicked off when Google announced their Chrome web browser in September, 2008 along with its V8 JS engine. This seemed to spark an arms race in JS engine performance along with much hyperbole that eventually all software could, would, and/or should be written in straight JavaScript for maximum portability and future-proofing, perhaps aided by Emscripten, a tool which magically transforms C and C++ code into JS. The latest round of rhetoric comes courtesy of something called asm.js which purports to narrow the gap between JS and native code performance.

    I haven’t been a believer, to express it charitably. But I wanted to be certain, so I set out to devise my own experiment to test modern JS performance.

    Up Front Summary
    I was extremely surprised that my experiment demonstrated JS performance FAR beyond my expectations. There might be something to these claims of magnficent JS speed in numerical applications. Basically, here were my thoughts during the process :

    • There’s no way that JavaScript can come anywhere close to C performance for a numerically intensive operation ; a simple experiment should demonstrate this.
    • Here’s a straightforward C program to perform a simple yet numerically intensive operation.
    • Let’s compile the C program on gcc and get some baseline performance numbers.
    • Let’s use Emscripten to convert the C program to JavaScript and run it under Chrome.
    • Ha ! Pitiful JS performance, just as I expected !
    • Try the same program under Firefox, since Firefox is supposed to have some crazy optimization for asm.js code, allegedly emitted by Emscripten.
    • LOL ! Firefox performs even worse than Chrome !
    • Wait a minute… the Emscripten documentation mentioned using optimization levels for generating higher performance JS, so try ‘-O1′.
    • Umm… wow : Chrome’s performance increased dramatically ! What about Firefox ? Not only is Firefox faster than Chrome, it’s faster than the gcc-generated code !
    • As my faith in C is suddenly shaken to its core, I remembered to compile the gcc version with an explicit optimization level. The native C version pulled ahead of Firefox again, but the Firefox code is still close.
    • Aha ! This is just desktop– but what about mobile ? One of the leading arguments for converting everything to pure JavaScript is that such programs will magically run perfectly in mobile browsers. So I wager that this is where the experiment will fall over.
    • I proceed to try the same converted program on a variety of mobile platforms.
    • The mobile platforms perform rather admirably as well.
    • I am surprised.

    The Experiment
    I wanted to run a simple yet numerically-intensive and relevant benchmark, and something I am familiar with. I settled on JPEG image decoding. Again, I wanted to keep this simple, ideally in a single file because I didn’t know how hard it might be to deal with Emscripten. I found NanoJPEG, which is a straightforward JPEG decoder contained in a single C file.

    I altered nanojpeg.c (to a new file called nanojpeg-static.c) such that the main() program would always load a 1920×1080 (a.k.a. 1080p) JPEG file (“bbb-1080p-title.jpg”, the Big Buck Bunny title), rather than requiring a command line argument. Then I used gettimeofday() to profile the core decoding function (njDecode()).

    Compiling with gcc and profiling execution :

    gcc -Wall nanojpeg-static.c -o nanojpeg-static
    ./nanojpeg-static
    

    Optimization levels such as -O0, -O3, or -Os can be applied to the compilation command.

    For JavaScript conversion, I installed Emscripten and converted using :

    /path/to/emscripten/emcc nanojpeg-static.c -o nanojpeg.html \
      —preload-file bbb-1080p-title.jpg -s TOTAL_MEMORY=32000000
    

    The ‘–preload-file’ option makes the file available to the program via standard C-style file I/O functions. The ‘-s TOTAL_MEMORY’ was necessary because the default of 16 MB wasn’t enough. Again, the -O optimization levels can be sent in.

    For running, the .html file is loaded (via webserver) in a web browser.

    Want To Try It Yourself ?
    I put the files here : http://multimedia.cx/emscripten/. The .c file, the JPEG file, and the Emscripten-converted files using -O0, -O1, -O2, -O3, -Os, and no optimization switch.

    Results and Charts
    Here is the spreadsheet with the raw results.

    I ran this experiment using Ubuntu Linux 12.04 on an Intel Atom N450-based netbook. For this part, I was able to compare the Chrome and Firefox browser results against the C results :



    These are the results for a 2nd generation Android Nexus 7 using both Chrome and Firefox :



    Here is the result for an iPad 2 running iOS 7 and Safari– there is no Firefox for iOS and while there is a version of Chrome for iOS, it apparently isn’t able to leverage an optimized JS engine. Chrome takes so long to complete this experiment that there’s no reason to muddy the graph with the results :



    Interesting that -O1 tends to provide better optimization than levels 2 or 3, and that -Os (optimize for size) seems to be a good all-around choice.

    Don’t Get Too Smug
    JavaScript can indeed get amazing performance in this day and age. Please be advised, however, that this isn’t the best that a C decoder implementation can possibly do. This version doesn’t leverage any SIMD extensions. According to profiling (using gprof against the C code), sample saturation in color conversion dominates followed by inverse DCT functions, common cases for SIMD ASM or intrinsics. Allegedly, there will be some support for JS SIMD optimizations some day. We’ll see.

    Implications For Development
    I’m still not especially motivated to try porting the entire Native Client game music player codebase to JavaScript. I’m still wondering about the recommended development flow. How are you supposed to develop for Emscripten and asm.js ? From what I can tell, Emscripten is not designed as a simple aide for porting C/C++ code to JS. No, it reduces the code into JS code you can’t possibly maintain. This seems to imply that the C/C++ code needs to be developed and debugged in its entirety and then converted to JS, which seems arduous.

  • what are requirement for an online video converter [on hold]

    25 juin 2018, par soroush

    i want develop an online video converter by nodejs or golang.

    This service is capable of converting 100 videos simultaneously into parallel.
    How much hardware is required to have this capability ?

  • How can I automatically embed commit information into a subtitles file that I'm tracking ?

    23 février 2015, par microspace

    I use git to track *.ass subtitle files.
    Here is example of *.ass file :

    [Script Info]
    ; Script generated by Aegisub 3.1.2
    ; http://www.aegisub.org/
    Title: Default Aegisub file
    ScriptType: v4.00+

    [V4+ Styles]
    Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour,    BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding
    Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,2,2,2,10,10,10,1
    Style: titr,DejaVu    

    Sans,20,&H007DDBFA,&H000000FF,&H00000000,&HFF000000,0,0,0,0,100,100,0,0,1,2,2,1,10,10,10,1

    [Events]
    Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
    Dialogue: 0,0:00:00.46,0:00:11.22,Default,,0,0,0,,Если это можно было бы
    Dialogue: 0,0:00:03.44,0:00:08.96,titr,,0,0,0,,{\pos(20,240)\fad(600,600)}бывший министр

    After commit I burn subtitles into video :

    ffmpeg -i video.avi -vf "ass=subtitle.ass" out.avi

    My goal is to show commit date for 10 second at the start of movie. This should be done automatically.

    1) It can be easily done with by modifying subtitle.ass itself, but I can’t do it after commit and there are other reasons.

    2) It can be done by ffmpeg from command line : How to use ffmpeg to add a text to avi video ?

    Problem is that in this case text will be shown for the whole lenght of movie.

    3) I can copy *.ass file to temporary directory, insert date, render and delete *.ass file.

    Is there a simpler way ?