Recherche avancée

Médias (0)

Mot : - Tags -/médias

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (81)

  • Automated installation script of MediaSPIP

    25 avril 2011, par

    To overcome the difficulties mainly due to the installation of server side software dependencies, an "all-in-one" installation script written in bash was created to facilitate this step on a server with a compatible Linux distribution.
    You must have access to your server via SSH and a root account to use it, which will install the dependencies. Contact your provider if you do not have that.
    The documentation of the use of this installation script is available here.
    The code of this (...)

  • Support de tous types de médias

    10 avril 2011

    Contrairement à beaucoup de logiciels et autres plate-formes modernes de partage de documents, MediaSPIP a l’ambition de gérer un maximum de formats de documents différents qu’ils soient de type : images (png, gif, jpg, bmp et autres...) ; audio (MP3, Ogg, Wav et autres...) ; vidéo (Avi, MP4, Ogv, mpg, mov, wmv et autres...) ; contenu textuel, code ou autres (open office, microsoft office (tableur, présentation), web (html, css), LaTeX, Google Earth) (...)

  • List of compatible distributions

    26 avril 2011, par

    The table below is the list of Linux distributions compatible with the automated installation script of MediaSPIP. Distribution nameVersion nameVersion number Debian Squeeze 6.x.x Debian Weezy 7.x.x Debian Jessie 8.x.x Ubuntu The Precise Pangolin 12.04 LTS Ubuntu The Trusty Tahr 14.04
    If you want to help us improve this list, you can provide us access to a machine whose distribution is not mentioned above or send the necessary fixes to add (...)

Sur d’autres sites (3423)

  • ffmpeg on RTSP stream works on local but fail on Heroku

    13 avril 2022, par mkto

    I have a piece of Node.js script that :

    


      

    1. Extract one image frame from an mp4 file using ffmpeg
    2. 


    3. Extract one image frame from an RTSP stream using ffmpeg.
    4. 


    


    They works on local. However when uploaded on Heroku using a ffmpeg Heroku buildpack :
https://github.com/jonathanong/heroku-buildpack-ffmpeg-latest/issues?q=rtsp, extract RTSP fail silently without any error output.

    


    This is the comparison of the ffmpeg versions :

    


    ffmpeg on Heroku :

    


    ffmpeg version N-60837-ge81242bb13-static https://johnvansickle.com/ffmpeg/  Copyright (c) 2000-2022 the FFmpeg developers
  built with gcc 8 (Debian 8.3.0-6)
  configuration: --enable-gpl --enable-version3 --enable-static --disable-debug --disable-ffplay --disable-indev=sndio --disable-outdev=sndio --cc=gcc --enable-fontconfig --enable-frei0r --enable-gnutls --enable-gmp --enable-libgme --enable-gray --enable-libaom --enable-libfribidi --enable-libass --enable-libvmaf --enable-libfreetype --enable-libmp3lame --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-librubberband --enable-libsoxr --enable-libspeex --enable-libsrt --enable-libvorbis --enable-libopus --enable-libtheora --enable-libvidstab --enable-libvo-amrwbenc --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libdav1d --enable-libxvid --enable-libzvbi --enable-libzimg
  libavutil      57. 22.100 / 57. 22.100
  libavcodec     59. 21.103 / 59. 21.103
  libavformat    59. 17.102 / 59. 17.102
  libavdevice    59.  5.100 / 59.  5.100
  libavfilter     8. 27.100 /  8. 27.100
  libswscale      6.  5.100 /  6.  5.100
  libswresample   4.  4.100 /  4.  4.100
  libpostproc    56.  4.100 / 56.  4.100
Hyper fast Audio and Video encoder
usage: ffmpeg [options] [[infile options] -i infile]... {[outfile options] outfile}...


    


    ffmpeg locally :

    


    ffmpeg version 4.3.2 Copyright (c) 2000-2021 the FFmpeg developers
  built with Apple clang version 12.0.0 (clang-1200.0.32.29)
  configuration: --prefix=/usr/local/Cellar/ffmpeg/4.3.2_4 --enable-shared --enable-pthreads --enable-version3 --enable-avresample --cc=clang --host-cflags= --host-ldflags= --enable-ffplay --enable-gnutls --enable-gpl --enable-libaom --enable-libbluray --enable-libdav1d --enable-libmp3lame --enable-libopus --enable-librav1e --enable-librubberband --enable-libsnappy --enable-libsrt --enable-libtesseract --enable-libtheora --enable-libvidstab --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libxvid --enable-lzma --enable-libfontconfig --enable-libfreetype --enable-frei0r --enable-libass --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-libspeex --enable-libsoxr --enable-libzmq --enable-libzimg --disable-libjack --disable-indev=jack --enable-videotoolbox
  libavutil      56. 51.100 / 56. 51.100
  libavcodec     58. 91.100 / 58. 91.100
  libavformat    58. 45.100 / 58. 45.100
  libavdevice    58. 10.100 / 58. 10.100
  libavfilter     7. 85.100 /  7. 85.100
  libavresample   4.  0.  0 /  4.  0.  0
  libswscale      5.  7.100 /  5.  7.100
  libswresample   3.  7.100 /  3.  7.100
  libpostproc    55.  7.100 / 55.  7.100
Hyper fast Audio and Video encoder
usage: ffmpeg [options] [[infile options] -i infile]... {[outfile options] outfile}...


    


    I can't tell whats the problem ?

    


  • Google Optimize vs Matomo A/B Testing : Everything You Need to Know

    17 mars 2023, par Erin — Analytics Tips

    Google Optimize is a popular A/B testing tool marketers use to validate the performance of different marketing assets, website design elements and promotional offers. 

    But by September 2023, Google will sunset both free and paid versions of the Optimize product. 

    If you’re searching for an equally robust, but GDPR compliant, privacy-friendly alternative to Google Optimize, have a look at Matomo A/B Testing

    Integrated with our analytics platform and conversion rate optimisation (CRO) tools, Matomo allows you to run A/B and A/B/n tests without any usage caps or compromises in user privacy.

    Disclaimer : Please note that the information provided in this blog post is for general informational purposes only and is not intended to provide legal advice. Every situation is unique and requires a specific legal analysis. If you have any questions regarding the legal implications of any matter, please consult with your legal team or seek advice from a qualified legal professional.

    Google Optimize vs Matomo : Key Capabilities Compared 

    This guide shows how Matomo A/B testing stacks against Google Optimize in terms of features, reporting, integrations and pricing.

    Supported Platforms 

    Google Optimize supports experiments for dynamic websites and single-page mobile apps only. 

    If you want to run split tests in mobile apps, you’ll have to do so via Firebase — Google’s app development platform. It also has a free tier but paid usage-based subscription kicks in after your product(s) reaches a certain usage threshold. 

    Google Optimize also doesn’t support CRO experiments for web or desktop applications, email campaigns or paid ad campaigns.Matomo A/B Testing, in contrast, allows you to run experiments in virtually every channel. We have three installation options — using JavaScript, server-side technology, or our mobile tracking SDK. These allow you to run split tests in any type of web or mobile app (including games), a desktop product, or on your website. Also, you can do different email marketing tests (e.g., compare subject line variants).

    A/B Testing 

    A/B testing (split testing) is the core feature of both products. Marketers use A/B testing to determine which creative elements such as website microcopy, button placements and banner versions, resonate better with target audiences. 

    You can benchmark different versions against one another to determine which variation resonates more with users. Or you can test an A version against B, C, D and beyond. This is called A/B/n testing. 

    Both Matomo A/B testing and Google Optimize let you test either separate page elements or two completely different landing page designs, using redirect tests. You can show different variants to different user groups (aka apply targeting criteria). For example, activate tests only for certain device types, locations or types of on-site behaviour. 

    The advantage of Matomo is that we don’t limit the number of concurrent experiments you can run. With Google Optimize, you’re limited to 5 simultaneous experiments. Likewise, 

    Matomo lets you select an unlimited number of experiment objectives, whereas Google caps the maximum choice to 3 predefined options per experiment. 

    Objectives are criteria the underlying statistical model will use to determine the best-performing version. Typically, marketers use metrics such as page views, session duration, bounce rate or generated revenue as conversion goals

    Conversions Report Matomo

    Multivariate testing (MVT)

    Multivariate testing (MVT) allows you to “pack” several A/B tests into one active experiment. In other words : You create a stack of variants to determine which combination drives the best marketing outcomes. 

    For example, an MVT experiment can include five versions of a web page, where each has a different slogan, product image, call-to-action, etc. Visitors are then served with a different variation. The tracking code collects data on their behaviours and desired outcomes (objectives) and reports the results.

    MVT saves marketers time as it’s a great alternative to doing separate A/B tests for each variable. Both Matomo and Google Optimize support this feature. However, Google Optimize caps the number of possible combinations at 16, whereas Matomo has no limits. 

    Redirect Tests

    Redirect tests, also known as split URL tests, allow you to serve two entirely different web page versions to users and compare their performance. This option comes in handy when you’re redesigning your website or want to test a localised page version in a new market. 

    Also, redirect tests are a great way to validate the performance of bottom-of-the-funnel (BoFU) pages as a checkout page (for eCommerce websites), a pricing page (for SaaS apps) or a contact/booking form (for a B2B service businesses). 

    You can do split URL tests with Google Optimize and Matomo A/B Testing. 

    Experiment Design 

    Google Optimize provides a visual editor for making simple page changes to your website (e.g., changing button colour or adding several headline variations). You can then preview the changes before publishing an experiment. For more complex experiments (e.g., testing different page block sequences), you’ll have to codify experiments using custom JavaScript, HTML and CSS.

    In Matomo, all A/B tests are configured on the server-side (i.e., by editing your website’s raw HTML) or client-side via JavaScript. Afterwards, you use the Matomo interface to start or schedule an experiment, set objectives and view reports. 

    Experiment Configuration 

    Marketers know how complex customer journeys can be. Multiple factors — from location and device to time of the day and discount size — can impact your conversion rates. That’s why a great CRO app allows you to configure multiple tracking conditions. 

    Matomo A/B testing comes with granular controls. First of all, you can decide which percentage of total web visitors participate in any given experiment. By default, the number is set to 100%, but you can change it to any other option. 

    Likewise, you can change which percentage of traffic each variant gets in an experiment. For example, your original version can get 30% of traffic, while options A and B receive 40% each. We also allow users to specify custom parameters for experiment participation. You can only show your variants to people in specific geo-location or returning visitors only. 

    Finally, you can select any type of meaningful objective to evaluate each variant’s performance. With Matomo, you can either use standard website analytics metrics (e.g., total page views, bounce rate, CTR, visit direction, etc) or custom goals (e.g., form click, asset download, eCommerce order, etc). 

    In other words : You’re in charge of deciding on your campaign targeting criteria, duration and evaluation objectives.

    A free Google Optimize account comes with three main types of user targeting options : 

    • Geo-targeting at city, region, metro and country levels. 
    • Technology targeting  by browser, OS or device type, first-party cookie, etc. 
    • Behavioural targeting based on metrics like “time since first arrival” and “page referrer” (referral traffic source). 

    Users can also configure other types of tracking scenarios (for example to only serve tests to signed-in users), using condition-based rules

    Reporting 

    Both Matomo and Google Optimize use different statistical models to evaluate which variation performs best. 

    Matomo relies on statistical hypothesis testing, which we use to count unique visitors and report on conversion rates. We analyse all user data (with no data sampling applied), meaning you get accurate reporting, based on first-hand data, rather than deductions. For that reason, we ask users to avoid drawing conclusions before their experiment participation numbers reach a statistically significant result. Typically, we recommend running an experiment for at least several business cycles to get a comprehensive report. 

    Google Optimize, in turn, uses Bayesian inference — a statistical method, which relies on a random sample of users to compare the performance rates of each creative against one another. While a Bayesian model generates CRO reports faster and at a bigger scale, it’s based on inferences.

    Model developers need to have the necessary skills to translate subjective prior beliefs about the probability of a certain event into a mathematical formula. Since Google Optimize is a proprietary tool, you cannot audit the underlying model design and verify its accuracy. In other words, you trust that it was created with the right judgement. 

    In comparison, Matomo started as an open-source project, and our source code can be audited independently by anyone at any time. 

    Another reporting difference to mind is the reporting delays. Matomo Cloud generates A/B reports within 6 hours and in only 1 hour for Matomo On-Premise. Google Optimize, in turn, requires 12 hours from the first experiment setup to start reporting on results. 

    When you configure a test experiment and want to quickly verify that everything is set up correctly, this can be an inconvenience.

    User Privacy & GDPR Compliance 

    Google Optimize works in conjunction with Google Analytics, which isn’t GDPR compliant

    For all website traffic from the EU, you’re therefore obliged to show a cookie consent banner. The kicker, however, is that you can only show an Optimize experiment after the user gives consent to tracking. If the user doesn’t, they will only see an original page version. Considering that almost 40% of global consumers reject cookie consent banners, this can significantly affect your results.

    This renders Google Optimize mostly useless in the EU since it would only allow you to run tests with a fraction ( 60%) of EU traffic — and even less if you apply any extra targeting criteria. 

    In comparison, Matomo is fully GDPR compliant. Therefore, our users are legally exempt from displaying cookie-consent banners in most EU markets (with Germany and the UK being an exception). Since Matomo A/B testing is part of Matomo web analytics, you don’t have to worry about GDPR compliance or breaches in user privacy. 

    Digital Experience Intelligence 

    You can get comprehensive statistical data on variants’ performance with Google Optimize. But you don’t get further insights on why some tests are more successful than others. 

    Matomo enables you to collect more insights with two extra features :

    • User session recordings : Monitor how users behave on different page versions. Observe clicks, mouse movements, scrolls, page changes, and form interactions to better understand the users’ cumulative digital experience. 
    • Heatmaps : Determine which elements attract the most users’ attention to fine-tune your split tests. With a standard CRO tool, you only assume that a certain page element does matter for most users. A heatmap can help you determine for sure. 

    Both of these features are bundled into your Matomo Cloud subscription

    Integrations 

    Both Matomo and Google Optimize integrate with multiple other tools. 

    Google Optimize has native integrations with other products in the marketing family — GA, Google Ads, Google Tag Manager, Google BigQuery, Accelerated Mobile Pages (AMP), and Firebase. Separately, other popular marketing apps have created custom connectors for integrating Google Optimize data. 

    Matomo A/B Testing, in turn, can be combined with other web analytics and CRO features such as Funnels, Multi-Channel Attribution, Tag Manager, Form Analytics, Heatmaps, Session Recording, and more ! 

    You can also conveniently export your website analytics or CRO data using Matomo Analytics API to analyse it in another app. 

    Pricing 

    Google Optimize is a free tool but has usage caps. If you want to schedule more than 5 concurrent experiments or test more than 16 variants at once, you’ll have to upgrade to Optimize 360. Optimize 360 prices aren’t listed publicly but are said to be closer to six figures per year. 

    Matomo A/B Testing is available with every Cloud subscription (starting from €19) and Matomo On-Premise users can also get A/B Testing as a plugin (starting from €199/year). In each case, there are no caps or data limits. 

    Google Optimize vs Matomo A/B Testing : Comparison Table

    Features/capabilitiesGoogle OptimizeMatomo A/B test
    Supported channelsWebWeb, mobile, email, digital campaigns
    A/B testingcheck mark iconcheck mark icon
    Multivariate testing (MVT)check mark iconcheck mark icon
    Split URL testscheck mark iconcheck mark icon
    Web analytics integration Native with UA/GA4 Native with Matomo

    You can also migrate historical UA (GA3) data to Matomo
    Audience segmentation BasicAdvanced
    Geo-targetingcheck mark iconX
    Technology targetingcheck mark iconX
    Behavioural targetingBasicAdvanced
    Reporting modelBayesian analysisStatistical hypothesis testing
    Report availability Within 12 hours after setup 6 hours for Matomo Cloud

    1 hour for Matomo On-Premise
    HeatmapsXcheck mark icon

    Included with Matomo Cloud
    Session recordingsXcheck mark icon

    Included with Matomo Cloud
    GDPR complianceXcheck mark icon
    Support Self-help desk on a free tierSelf-help guides, user forum, email
    PriceFree limited tier From €19 for Cloud subscription

    From €199/year as plugin for On-Premise

    Final Thoughts : Who Benefits the Most From an A/B Testing Tool ?

    Split testing is an excellent method for validating various assumptions about your target customers. 

    With A/B testing tools you get a data-backed answer to research hypotheses such as “How different pricing affects purchases ?”, “What contact button placement generates more clicks ?”, “Which registration form performs best with new app subscribers ?” and more. 

    Such insights can be game-changing when you’re trying to improve your demand-generation efforts or conversion rates at the BoFu stage. But to get meaningful results from CRO tests, you need to select measurable, representative objectives.

    For example, split testing different pricing strategies for low-priced, frequently purchased products makes sense as you can run an experiment for a couple of weeks to get a statistically relevant sample. 

    But if you’re in a B2B SaaS product, where the average sales cycle takes weeks (or months) to finalise and things like “time-sensitive discounts” or “one-time promos” don’t really work, getting adequate CRO data will be harder. 

    To see tangible results from CRO, you’ll need to spend more time on test ideation than implementation. Your team needs to figure out : which elements to test, in what order, and why. 

    Effective CRO tests are designed for a specific part of the funnel and assume that you’re capable of effectively identifying and tracking conversions (goals) at the selected stage. This alone can be a complex task since not all customer journeys are alike. For SaaS websites, using a goal like “free trial account registration” can be a good starting point.

    A good test also produces a meaningful difference between the proposed variant and the original version. As Nima Yassini, Partner at Deloitte Digital, rightfully argues :

    “I see people experimenting with the goal of creating an uplift. There’s nothing wrong with that, but if you’re only looking to get wins you will be crushed when the first few tests fail. The industry average says that only one in five to seven tests win, so you need to be prepared to lose most of the time”.

    In many cases, CRO tests don’t provide the data you expected (e.g., people equally click the blue and green buttons). In this case, you need to start building your hypothesis from scratch. 

    At the same time, it’s easy to get caught up in optimising for “vanity metrics” — such that look good in the report, but don’t quite match your marketing objectives. For example, better email headline variations can improve your email open rates. But if users don’t proceed to engage with the email content (e.g. click-through to your website or use a provided discount code), your efforts are still falling short. 

    That’s why developing a baseline strategy is important before committing to an A/B testing tool. Google Optimize appealed to many users because it’s free and allows you to test your split test strategy cost-effectively. 

    With its upcoming depreciation, many marketers are very committed to a more expensive A/B tool (especially when they’re not fully sure about their CRO strategy and its results). 

    Matomo A/B testing is a cost-effective, GDPR-compliant alternative to Google Optimize with a low learning curve and extra competitive features. 

    Discover if Matomo A/B Testing is the ideal Google Optimize alternative for your organization with our free 21-day trial. No credit card required.

  • Ffmpeg - Reading header information takes too long

    13 mars 2023, par Md Yeamin

    I am using ffmpeg-kit to encode videos on android devices. For some files ffmpeg takes too long to read the header information. This issue happens very randomly. Sometime the execution completes within 1 or 2 seconds, sometime it takes longer than 10 seconds to complete, for the file linked below.

    


    I have build ffmpeg to log some additional info to figure out the root cause. There is a 10s gap between the log output at 15:17:02.276 and 15:17:12.909 (added a separator for quick find). After completion of the mov_read_ftyp there is a long delay before the mov_read_dref method starts the execution. Is there any other method that executed in between and could take this much long time to complete the execution ? What could be the reason behind the delay ?

    


    Here is detailed log about the issue.

    


    Log :

    


    2023-03-12 15:17:02.096 :: ffmpeg-kit-debug: execute:
2023-03-12 15:17:02.116 :: ffmpeg-kit-debug: LogCallback: setjmp
2023-03-12 15:17:02.120 :: ffmpeg-kit-debug: LogCallback: setjmp done
2023-03-12 15:17:02.124 :: ffmpeg-kit-debug: LogCallback: ffmpeg_var_cleanup
2023-03-12 15:17:02.127 :: ffmpeg-kit-debug: LogCallback: ffmpeg_var_cleanup done
2023-03-12 15:17:02.132 :: ffmpeg-kit-debug: LogCallback: init_dynload
2023-03-12 15:17:02.135 :: ffmpeg-kit-debug: LogCallback: init_dynload done
2023-03-12 15:17:02.137 :: ffmpeg-kit-debug: LogCallback: register_exit
2023-03-12 15:17:02.141 :: ffmpeg-kit-debug: LogCallback: register_exit done
2023-03-12 15:17:02.144 :: ffmpeg-kit-debug: LogCallback: avdevice_register_all
2023-03-12 15:17:02.151 :: ffmpeg-kit-debug: LogCallback: avdevice_register_all done
2023-03-12 15:17:02.155 :: ffmpeg-kit-debug: LogCallback: avformat_network_init
2023-03-12 15:17:02.159 :: ffmpeg-kit-debug: LogCallback: avformat_network_init done
2023-03-12 15:17:02.163 :: ffmpeg-kit-debug: LogCallback: show_banner
2023-03-12 15:17:02.165 :: ffmpeg-kit-debug: LogCallback: show_banner done
2023-03-12 15:17:02.169 :: ffmpeg-kit-debug: LogCallback: ffmpeg_parse_options
2023-03-12 15:17:02.172 :: ffmpeg-kit-debug: LogCallback: allocating memory
2023-03-12 15:17:02.176 :: ffmpeg-kit-debug: LogCallback: split_commandline
2023-03-12 15:17:02.179 :: ffmpeg-kit-debug: LogCallback: Splitting the commandline.

2023-03-12 15:17:02.182 :: ffmpeg-kit-debug: LogCallback: Reading option '-hide_banner' ...
2023-03-12 15:17:02.184 :: ffmpeg-kit-debug: LogCallback:  matched as option 'hide_banner' (do not show program banner) with argument '1'.

2023-03-12 15:17:02.187 :: ffmpeg-kit-debug: LogCallback: Reading option '-y' ...
2023-03-12 15:17:02.189 :: ffmpeg-kit-debug: LogCallback:  matched as option 'y' (overwrite output files) with argument '1'.

2023-03-12 15:17:02.193 :: ffmpeg-kit-debug: LogCallback: Reading option '-i' ...
2023-03-12 15:17:02.197 :: ffmpeg-kit-debug: LogCallback:  matched as input url with argument 'saf:6.MP4'.

2023-03-12 15:17:02.199 :: ffmpeg-kit-debug: LogCallback: Finished splitting the commandline.

2023-03-12 15:17:02.202 :: ffmpeg-kit-debug: LogCallback: split_commandline done
2023-03-12 15:17:02.203 :: ffmpeg-kit-debug: LogCallback: parse_optgroup
2023-03-12 15:17:02.205 :: ffmpeg-kit-debug: LogCallback: Parsing a group of options: global .

2023-03-12 15:17:02.207 :: ffmpeg-kit-debug: LogCallback: Applying option hide_banner (do not show program banner) with argument 1.

2023-03-12 15:17:02.210 :: ffmpeg-kit-debug: LogCallback: Applying option y (overwrite output files) with argument 1.

2023-03-12 15:17:02.212 :: ffmpeg-kit-debug: LogCallback: Successfully parsed a group of options.

2023-03-12 15:17:02.217 :: ffmpeg-kit-debug: LogCallback: parse_optgroup done
2023-03-12 15:17:02.220 :: ffmpeg-kit-debug: LogCallback: term_init
2023-03-12 15:17:02.224 :: ffmpeg-kit-debug: LogCallback: term_init done
2023-03-12 15:17:02.226 :: ffmpeg-kit-debug: LogCallback: open_files INPUT
2023-03-12 15:17:02.228 :: ffmpeg-kit-debug: LogCallback: Parsing a group of options: input url saf:6.MP4.

2023-03-12 15:17:02.232 :: ffmpeg-kit-debug: LogCallback: Successfully parsed a group of options.

2023-03-12 15:17:02.236 :: ffmpeg-kit-debug: LogCallback: Opening an input file: saf:6.MP4.

2023-03-12 15:17:02.239 :: ffmpeg-kit-debug: LogCallback: [NULL @ 0xb40000730dd9dbf0] Opening 'saf:6.MP4' for reading

2023-03-12 15:17:02.243 :: ffmpeg-kit-debug: LogCallback: [saf @ 0xb40000728de0ca10] Setting default whitelist 'saf,crypto,data'

2023-03-12 15:17:02.245 :: ffmpeg-kit-debug: LogCallback: fd_open start
2023-03-12 15:17:02.248 :: ffmpeg-kit-debug: LogCallback: fd_open opening
2023-03-12 15:17:02.252 :: ffmpeg-kit-debug: LogCallback: fd_open opened
2023-03-12 15:17:02.255 :: ffmpeg-kit-debug: LogCallback: mov_probe
2023-03-12 15:17:02.257 :: ffmpeg-kit-debug: LogCallback: [mov,mp4,m4a,3gp,3g2,mj2 @ 0xb40000730dd9dbf0] Format mov,mp4,m4a,3gp,3g2,mj2 probed with size=2048 and score=100

2023-03-12 15:17:02.260 :: ffmpeg-kit-debug: LogCallback: mov_read_header
2023-03-12 15:17:02.264 :: ffmpeg-kit-debug: LogCallback: mov_read_header seeking
2023-03-12 15:17:02.268 :: ffmpeg-kit-debug: LogCallback: [mov,mp4,m4a,3gp,3g2,mj2 @ 0xb40000730dd9dbf0] ISO: File Type Major Brand: mp41

2023-03-12 15:17:02.270 :: ffmpeg-kit-debug: LogCallback: mov_read_ftyp dict set
2023-03-12 15:17:02.273 :: ffmpeg-kit-debug: LogCallback: mov_read_ftyp mov_aaxc_crypto before
2023-03-12 15:17:02.276 :: ffmpeg-kit-debug: LogCallback: mov_read_ftyp mov_aaxc_crypto done
-----------------------------------------------------------------------------------------------
2023-03-12 15:17:12.909 :: ffmpeg-kit-debug: LogCallback: mov_read_dref started
2023-03-12 15:17:12.911 :: ffmpeg-kit-debug: LogCallback: mov_read_dref check entries
2023-03-12 15:17:12.915 :: ffmpeg-kit-debug: LogCallback: mov_read_dref drefs_count 0 
2023-03-12 15:17:12.918 :: ffmpeg-kit-debug: LogCallback: mov_read_dref av_free sc->drefs
2023-03-12 15:17:12.920 :: ffmpeg-kit-debug: LogCallback: [mov,mp4,m4a,3gp,3g2,mj2 @ 0xb40000730dd9dbf0] Unknown dref type 0x73696c61 size 12

2023-03-12 15:17:12.923 :: ffmpeg-kit-debug: LogCallback: [mov,mp4,m4a,3gp,3g2,mj2 @ 0xb40000730dd9dbf0] Processing st: 0, edit list 0 - media time: 0, duration: 39436397

2023-03-12 15:17:12.925 :: ffmpeg-kit-debug: LogCallback: mov_read_dref started
2023-03-12 15:17:12.931 :: ffmpeg-kit-debug: LogCallback: mov_read_dref check entries
2023-03-12 15:17:12.935 :: ffmpeg-kit-debug: LogCallback: mov_read_dref drefs_count 0 
2023-03-12 15:17:12.938 :: ffmpeg-kit-debug: LogCallback: mov_read_dref av_free sc->drefs
2023-03-12 15:17:12.945 :: ffmpeg-kit-debug: LogCallback: [mov,mp4,m4a,3gp,3g2,mj2 @ 0xb40000730dd9dbf0] Unknown dref type 0x73696c61 size 12

2023-03-12 15:17:12.951 :: ffmpeg-kit-debug: LogCallback: mov_read_dref started
2023-03-12 15:17:12.958 :: ffmpeg-kit-debug: LogCallback: mov_read_dref check entries
2023-03-12 15:17:12.965 :: ffmpeg-kit-debug: LogCallback: mov_read_dref drefs_count 0 
2023-03-12 15:17:12.971 :: ffmpeg-kit-debug: LogCallback: mov_read_dref av_free sc->drefs
2023-03-12 15:17:12.975 :: ffmpeg-kit-debug: LogCallback: [mov,mp4,m4a,3gp,3g2,mj2 @ 0xb40000730dd9dbf0] Unknown dref type 0x73696c61 size 12

2023-03-12 15:17:12.978 :: ffmpeg-kit-debug: LogCallback: mov_read_dref started
2023-03-12 15:17:12.985 :: ffmpeg-kit-debug: LogCallback: mov_read_dref check entries
2023-03-12 15:17:12.988 :: ffmpeg-kit-debug: LogCallback: mov_read_dref drefs_count 0 
2023-03-12 15:17:12.990 :: ffmpeg-kit-debug: LogCallback: mov_read_dref av_free sc->drefs
2023-03-12 15:17:12.992 :: ffmpeg-kit-debug: LogCallback: [mov,mp4,m4a,3gp,3g2,mj2 @ 0xb40000730dd9dbf0] Unknown dref type 0x73696c61 size 12

2023-03-12 15:17:12.994 :: ffmpeg-kit-debug: LogCallback: mov_read_dref started
2023-03-12 15:17:12.996 :: ffmpeg-kit-debug: LogCallback: mov_read_dref check entries
2023-03-12 15:17:12.997 :: ffmpeg-kit-debug: LogCallback: mov_read_dref drefs_count 0 
2023-03-12 15:17:12.999 :: ffmpeg-kit-debug: LogCallback: mov_read_dref av_free sc->drefs
2023-03-12 15:17:13.002 :: ffmpeg-kit-debug: LogCallback: [mov,mp4,m4a,3gp,3g2,mj2 @ 0xb40000730dd9dbf0] Unknown dref type 0x73696c61 size 12

2023-03-12 15:17:13.003 :: ffmpeg-kit-debug: LogCallback: [mov,mp4,m4a,3gp,3g2,mj2 @ 0xb40000730dd9dbf0] All samples in data stream index:id [4:5] have zero duration, stream set to be discarded by default. Override using AVStream->discard or -discard for ffmpeg command.

2023-03-12 15:17:13.006 :: ffmpeg-kit-debug: LogCallback: mov_read_header seek done
2023-03-12 15:17:13.008 :: ffmpeg-kit-debug: LogCallback: mov_read_header parse done
2023-03-12 15:17:13.010 :: ffmpeg-kit-debug: LogCallback: mov_read_header trex data read done
2023-03-12 15:17:13.011 :: ffmpeg-kit-debug: LogCallback: mov_read_header bitrate calculation code
2023-03-12 15:17:13.013 :: ffmpeg-kit-debug: LogCallback: mov_read_header fps calculation done
2023-03-12 15:17:13.015 :: ffmpeg-kit-debug: LogCallback: mov_read_header read side data done
2023-03-12 15:17:13.017 :: ffmpeg-kit-debug: LogCallback: [mov,mp4,m4a,3gp,3g2,mj2 @ 0xb40000730dd9dbf0] Before avformat_find_stream_info() pos: 3720541874 bytes read:3720541874 seeks:0 nb_streams:5

2023-03-12 15:17:13.019 :: ffmpeg-kit-debug: LogCallback: [h264 @ 0xb40000731df00bc0] nal_unit_type: 7(SPS), nal_ref_idc: 1

2023-03-12 15:17:13.022 :: ffmpeg-kit-debug: LogCallback: [h264 @ 0xb40000731df00bc0] nal_unit_type: 8(PPS), nal_ref_idc: 1

2023-03-12 15:17:13.024 :: ffmpeg-kit-debug: LogCallback: fd_seek start
2023-03-12 15:17:13.028 :: ffmpeg-kit-debug: LogCallback: fd_seek seeking
2023-03-12 15:17:13.030 :: ffmpeg-kit-debug: LogCallback: fd_seek seek done
2023-03-12 15:17:13.033 :: ffmpeg-kit-debug: LogCallback: [h264 @ 0xb40000731df00bc0] nal_unit_type: 7(SPS), nal_ref_idc: 1

2023-03-12 15:17:13.035 :: ffmpeg-kit-debug: LogCallback: [h264 @ 0xb40000731df00bc0] nal_unit_type: 8(PPS), nal_ref_idc: 1

2023-03-12 15:17:13.038 :: ffmpeg-kit-debug: LogCallback: [h264 @ 0xb40000731df00bc0] nal_unit_type: 9(AUD), nal_ref_idc: 0

2023-03-12 15:17:13.042 :: ffmpeg-kit-debug: LogCallback: [h264 @ 0xb40000731df00bc0] nal_unit_type: 5(IDR), nal_ref_idc: 1

2023-03-12 15:17:13.047 :: ffmpeg-kit-debug: LogCallback: [h264 @ 0xb40000731df00bc0] Format yuvj420p chosen by get_format().

2023-03-12 15:17:13.059 :: ffmpeg-kit-debug: LogCallback: [h264 @ 0xb40000731df00bc0] Reinit context to 1920x1088, pix_fmt: yuvj420p

2023-03-12 15:17:13.066 :: ffmpeg-kit-debug: LogCallback: [mov,mp4,m4a,3gp,3g2,mj2 @ 0xb40000730dd9dbf0] All info found

2023-03-12 15:17:13.071 :: ffmpeg-kit-debug: LogCallback: fd_seek start
2023-03-12 15:17:13.075 :: ffmpeg-kit-debug: LogCallback: fd_seek size check error
2023-03-12 15:17:13.077 :: ffmpeg-kit-debug: LogCallback: fd_seek start
2023-03-12 15:17:13.081 :: ffmpeg-kit-debug: LogCallback: fd_seek size check error
2023-03-12 15:17:13.087 :: ffmpeg-kit-debug: LogCallback: fd_seek start
2023-03-12 15:17:13.090 :: ffmpeg-kit-debug: LogCallback: fd_seek size check error
2023-03-12 15:17:13.093 :: ffmpeg-kit-debug: LogCallback: [mov,mp4,m4a,3gp,3g2,mj2 @ 0xb40000730dd9dbf0] After avformat_find_stream_info() pos: 323745 bytes read:3720930284 seeks:1 frames:3

2023-03-12 15:17:13.096 :: ffmpeg-kit-debug: LogCallback: Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'saf:6.MP4':

2023-03-12 15:17:13.099 :: ffmpeg-kit-debug: LogCallback:   Metadata:

2023-03-12 15:17:13.102 :: ffmpeg-kit-debug: LogCallback:     major_brand     : 
2023-03-12 15:17:13.108 :: ffmpeg-kit-debug: LogCallback: mp41
2023-03-12 15:17:13.110 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.113 :: ffmpeg-kit-debug: LogCallback:     minor_version   : 
2023-03-12 15:17:13.115 :: ffmpeg-kit-debug: LogCallback: 538120216
2023-03-12 15:17:13.119 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.121 :: ffmpeg-kit-debug: LogCallback:     compatible_brands: 
2023-03-12 15:17:13.124 :: ffmpeg-kit-debug: LogCallback: mp41
2023-03-12 15:17:13.127 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.129 :: ffmpeg-kit-debug: LogCallback:     creation_time   : 
2023-03-12 15:17:13.132 :: ffmpeg-kit-debug: LogCallback: 2022-02-06T13:53:53.000000Z
2023-03-12 15:17:13.136 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.138 :: ffmpeg-kit-debug: LogCallback:     firmware        : 
2023-03-12 15:17:13.140 :: ffmpeg-kit-debug: LogCallback: HD9.01.01.60.00
2023-03-12 15:17:13.142 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.144 :: ffmpeg-kit-debug: LogCallback:   Duration: 
2023-03-12 15:17:13.146 :: ffmpeg-kit-debug: LogCallback: 00:10:57.27
2023-03-12 15:17:13.149 :: ffmpeg-kit-debug: LogCallback: , start: 
2023-03-12 15:17:13.152 :: ffmpeg-kit-debug: LogCallback: 0.000000
2023-03-12 15:17:13.154 :: ffmpeg-kit-debug: LogCallback: , bitrate: 
2023-03-12 15:17:13.157 :: ffmpeg-kit-debug: LogCallback: 45284 kb/s
2023-03-12 15:17:13.159 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.161 :: ffmpeg-kit-debug: LogCallback:   Chapters:

2023-03-12 15:17:13.164 :: ffmpeg-kit-debug: LogCallback:     Chapter #0:0: 
2023-03-12 15:17:13.166 :: ffmpeg-kit-debug: LogCallback: start 619.735000, 
2023-03-12 15:17:13.169 :: ffmpeg-kit-debug: LogCallback: end 657.273000

2023-03-12 15:17:13.171 :: ffmpeg-kit-debug: LogCallback:   Stream #0:0
2023-03-12 15:17:13.174 :: ffmpeg-kit-debug: LogCallback: [0x1]
2023-03-12 15:17:13.175 :: ffmpeg-kit-debug: LogCallback: (eng)
2023-03-12 15:17:13.177 :: ffmpeg-kit-debug: LogCallback: , 1, 1/60000
2023-03-12 15:17:13.182 :: ffmpeg-kit-debug: LogCallback: : Video: h264, 1 reference frame (avc1 / 0x31637661), yuvj420p(pc, bt709, progressive, left), 1920x1080 (1920x1088) [SAR 1:1 DAR 16:9], 0/1, 45005 kb/s
2023-03-12 15:17:13.185 :: ffmpeg-kit-debug: LogCallback: , 
2023-03-12 15:17:13.189 :: ffmpeg-kit-debug: LogCallback: 59.94 fps, 
2023-03-12 15:17:13.192 :: ffmpeg-kit-debug: LogCallback: 59.94 tbr, 
2023-03-12 15:17:13.194 :: ffmpeg-kit-debug: LogCallback: 60k tbn
2023-03-12 15:17:13.197 :: ffmpeg-kit-debug: LogCallback:  (default)
2023-03-12 15:17:13.199 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.200 :: ffmpeg-kit-debug: LogCallback:     Metadata:

2023-03-12 15:17:13.203 :: ffmpeg-kit-debug: LogCallback:       creation_time   : 
2023-03-12 15:17:13.204 :: ffmpeg-kit-debug: LogCallback: 2022-02-06T13:53:53.000000Z
2023-03-12 15:17:13.206 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.209 :: ffmpeg-kit-debug: LogCallback:       handler_name    : 
2023-03-12 15:17:13.211 :: ffmpeg-kit-debug: LogCallback: GoPro AVC  
2023-03-12 15:17:13.213 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.216 :: ffmpeg-kit-debug: LogCallback:       vendor_id       : 
2023-03-12 15:17:13.219 :: ffmpeg-kit-debug: LogCallback: [0][0][0][0]
2023-03-12 15:17:13.220 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.223 :: ffmpeg-kit-debug: LogCallback:       encoder         : 
2023-03-12 15:17:13.225 :: ffmpeg-kit-debug: LogCallback: GoPro AVC encoder
2023-03-12 15:17:13.227 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.229 :: ffmpeg-kit-debug: LogCallback:   Stream #0:1
2023-03-12 15:17:13.231 :: ffmpeg-kit-debug: LogCallback: [0x2]
2023-03-12 15:17:13.233 :: ffmpeg-kit-debug: LogCallback: (eng)
2023-03-12 15:17:13.236 :: ffmpeg-kit-debug: LogCallback: , 1, 1/48000
2023-03-12 15:17:13.238 :: ffmpeg-kit-debug: LogCallback: : Audio: aac (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 189 kb/s
2023-03-12 15:17:13.240 :: ffmpeg-kit-debug: LogCallback:  (default)
2023-03-12 15:17:13.243 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.244 :: ffmpeg-kit-debug: LogCallback:     Metadata:

2023-03-12 15:17:13.247 :: ffmpeg-kit-debug: LogCallback:       creation_time   : 
2023-03-12 15:17:13.252 :: ffmpeg-kit-debug: LogCallback: 2022-02-06T13:53:53.000000Z
2023-03-12 15:17:13.255 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.257 :: ffmpeg-kit-debug: LogCallback:       handler_name    : 
2023-03-12 15:17:13.259 :: ffmpeg-kit-debug: LogCallback: GoPro AAC  
2023-03-12 15:17:13.262 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.264 :: ffmpeg-kit-debug: LogCallback:       vendor_id       : 
2023-03-12 15:17:13.268 :: ffmpeg-kit-debug: LogCallback: [0][0][0][0]
2023-03-12 15:17:13.271 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.274 :: ffmpeg-kit-debug: LogCallback:   Stream #0:2
2023-03-12 15:17:13.276 :: ffmpeg-kit-debug: LogCallback: [0x3]
2023-03-12 15:17:13.278 :: ffmpeg-kit-debug: LogCallback: (eng)
2023-03-12 15:17:13.280 :: ffmpeg-kit-debug: LogCallback: , 1, 1/60000
2023-03-12 15:17:13.281 :: ffmpeg-kit-debug: LogCallback: : Data: none (tmcd / 0x64636D74), 0/1
2023-03-12 15:17:13.284 :: ffmpeg-kit-debug: LogCallback:  (default)
2023-03-12 15:17:13.288 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.290 :: ffmpeg-kit-debug: LogCallback:     Metadata:

2023-03-12 15:17:13.291 :: ffmpeg-kit-debug: LogCallback:       creation_time   : 
2023-03-12 15:17:13.292 :: ffmpeg-kit-debug: LogCallback: 2022-02-06T13:53:53.000000Z
2023-03-12 15:17:13.294 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.296 :: ffmpeg-kit-debug: LogCallback:       handler_name    : 
2023-03-12 15:17:13.299 :: ffmpeg-kit-debug: LogCallback: GoPro TCD  
2023-03-12 15:17:13.302 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.306 :: ffmpeg-kit-debug: LogCallback:   Stream #0:3
2023-03-12 15:17:13.309 :: ffmpeg-kit-debug: LogCallback: [0x4]
2023-03-12 15:17:13.310 :: ffmpeg-kit-debug: LogCallback: (eng)
2023-03-12 15:17:13.313 :: ffmpeg-kit-debug: LogCallback: , 0, 1/1000
2023-03-12 15:17:13.316 :: ffmpeg-kit-debug: LogCallback: : Data: bin_data (gpmd / 0x646D7067), 0/1, 61 kb/s
2023-03-12 15:17:13.318 :: ffmpeg-kit-debug: LogCallback:  (default)
2023-03-12 15:17:13.320 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.322 :: ffmpeg-kit-debug: LogCallback:     Metadata:

2023-03-12 15:17:13.325 :: ffmpeg-kit-debug: LogCallback:       creation_time   : 
2023-03-12 15:17:13.327 :: ffmpeg-kit-debug: LogCallback: 2022-02-06T13:53:53.000000Z
2023-03-12 15:17:13.329 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.331 :: ffmpeg-kit-debug: LogCallback:       handler_name    : 
2023-03-12 15:17:13.335 :: ffmpeg-kit-debug: LogCallback: GoPro MET  
2023-03-12 15:17:13.337 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.339 :: ffmpeg-kit-debug: LogCallback:   Stream #0:4
2023-03-12 15:17:13.342 :: ffmpeg-kit-debug: LogCallback: [0x5]
2023-03-12 15:17:13.344 :: ffmpeg-kit-debug: LogCallback: (eng)
2023-03-12 15:17:13.345 :: ffmpeg-kit-debug: LogCallback: , 0, 1/60000
2023-03-12 15:17:13.347 :: ffmpeg-kit-debug: LogCallback: : Data: none (fdsc / 0x63736466), 0/1, 13 kb/s
2023-03-12 15:17:13.350 :: ffmpeg-kit-debug: LogCallback:  (default)
2023-03-12 15:17:13.352 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.354 :: ffmpeg-kit-debug: LogCallback:     Metadata:

2023-03-12 15:17:13.356 :: ffmpeg-kit-debug: LogCallback:       creation_time   : 
2023-03-12 15:17:13.359 :: ffmpeg-kit-debug: LogCallback: 2022-02-06T13:53:53.000000Z
2023-03-12 15:17:13.361 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.365 :: ffmpeg-kit-debug: LogCallback:       handler_name    : 
2023-03-12 15:17:13.369 :: ffmpeg-kit-debug: LogCallback: GoPro SOS  
2023-03-12 15:17:13.372 :: ffmpeg-kit-debug: LogCallback: 

2023-03-12 15:17:13.374 :: ffmpeg-kit-debug: LogCallback: Successfully opened the file.

2023-03-12 15:17:13.376 :: ffmpeg-kit-debug: LogCallback: open_files INPUT done
2023-03-12 15:17:13.378 :: ffmpeg-kit-debug: LogCallback: apply_sync_offsets
2023-03-12 15:17:13.382 :: ffmpeg-kit-debug: LogCallback: apply_sync_offsets done
2023-03-12 15:17:13.386 :: ffmpeg-kit-debug: LogCallback: init_complex_filters
2023-03-12 15:17:13.389 :: ffmpeg-kit-debug: LogCallback: init_complex_filters done
2023-03-12 15:17:13.391 :: ffmpeg-kit-debug: LogCallback: open_files OUTPUT
2023-03-12 15:17:13.392 :: ffmpeg-kit-debug: LogCallback: open_files OUTPUT done
2023-03-12 15:17:13.395 :: ffmpeg-kit-debug: LogCallback: check_filter_outputs
2023-03-12 15:17:13.397 :: ffmpeg-kit-debug: LogCallback: check_filter_outputs done
2023-03-12 15:17:13.399 :: ffmpeg-kit-debug: LogCallback: ffmpeg_parse_options done
2023-03-12 15:17:13.402 :: ffmpeg-kit-debug: LogCallback: At least one output file must be specified

2023-03-12 15:17:13.405 :: ffmpeg-kit-debug: LogCallback: [AVIOContext @ 0xb4000072dddd6510] Statistics: 3720930284 bytes read, 1 seeks

2023-03-12 15:17:13.407 :: ffmpeg-kit-debug: LogCallback: fd_close start
2023-03-12 15:17:13.410 :: ffmpeg-kit-debug: LogCallback: fd_close done
2023-03-12 15:17:13.412 :: ffmpeg-kit-debug: LogCallback: setjmp done


    


    Note : I have built ffmpeg-kit with the following script :

    


    #!/bin/bash

export ENCODERS="libvorbis,libvpx_vp8,libvpx_vp9,libx264,libx265,mpeg1video,mpeg2video,mpeg4,flv,wmv1,wmv2,msmpeg4v3,libaom_av1,\
h261,h263,theora,libtheora,png,aac,ac3,alac,libopencore_amrnb,libvo_amrwbenc,eac3,flac,mp2,libtwolame,libmp3lame,libopus,libspeex,wavpack,wmav1,wmav2,pcm_s16le,\
ssa,ass,dvbsub,dvdsub,movtext,srt,subrip,text,ttml,webvtt,xsub"

export SETTINGS="--disable-indevs \
  --enable-pthreads \
  --enable-indev=lavfi \
  --disable-outdevs \
  --disable-protocols \
  --enable-protocol=file,fd,saf,async \
  --disable-encoders \
  --enable-encoder=${ENCODERS}"

export CUSTOM_CONFIG=${SETTINGS}

./android.sh --disable-arm-v7a --disable-arm-v7a-neon --disable-x86 --disable-x86-64 --enable-android-media-codec --enable-android-zlib --enable-chromaprint --enable-dav1d --enable-fontconfig --enable-freetype --enable-fribidi --enable-gmp --enable-gnutls --enable-kvazaar --enable-lame --enable-libaom --enable-libass --enable-libiconv --enable-libilbc --enable-libtheora --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libxml2 --enable-opencore-amr --enable-openh264 --enable-opus --enable-sdl --enable-shine --enable-snappy --enable-soxr --enable-speex --enable-tesseract --enable-twolame --enable-vo-amrwbenc --enable-zimg --enable-x264 --enable-x265 --enable-gpl -l


    


    Sample file : https://drive.google.com/file/d/1lvCiOBQqBEnUECn_HJi8qUoaCPCBnkgO/view?usp=share_link

    


    Ffmpeg version : 5.1.