
Recherche avancée
Autres articles (70)
-
MediaSPIP version 0.1 Beta
16 avril 2011, parMediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...) -
MediaSPIP 0.1 Beta version
25 avril 2011, parMediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
The zip file provided here only contains the sources of MediaSPIP in its standalone version.
To get a working installation, you must manually install all-software dependencies on the server.
If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...) -
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
Sur d’autres sites (9539)
-
What tool can I use to analyze audio and clip webm files ? [closed]
14 février, par Phillip FeldmanI have a bunch of 2-3 hour long podcast webms from Youtube. I want to extract the audio from them, and programmatically analyze things like volume, or who's speaking. I then want to use my analysis to clip the original webms. What tools can I use to do this, and is size of the audio files something that I need to consider ? I know python and have used ffmpeg.


-
Model the loss of video codec
10 janvier 2024, par MonacoI want to use a neural network to model the error loss after video encoding. The modeling process is as follows :


I use ffmpeg to encode and decode video frames. Since this process is not implemented using tensors in PyTorch and cannot compute gradients, I have to separately implement a neural network in PyTorch to enable gradient backpropagation. However, it turns out that the neural network cannot effectively learn the video encoding.


I want to know if there are currently any implementations of video encoders or decoders that support backpropagation of gradients. I don't necessarily need to update the parameters of the encoder/decoder, but I want it to support gradient backpropagation so that I can use it for various tasks related to deep learning.


-
w32pthreads : Mark functions in compatibility wrapper as av_unused
14 août 2014, par Diego Biurrunw32pthreads : Mark functions in compatibility wrapper as av_unused
This avoids annoying warnings about unused functions. The compatibility
wrapper is designed to provide a complete (stub) API, so some functions
being unused by some files is natural and no reason for a warning.