Recherche avancée

Médias (0)

Mot : - Tags -/serveur

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (9)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • XMP PHP

    13 mai 2011, par

    Dixit Wikipedia, XMP signifie :
    Extensible Metadata Platform ou XMP est un format de métadonnées basé sur XML utilisé dans les applications PDF, de photographie et de graphisme. Il a été lancé par Adobe Systems en avril 2001 en étant intégré à la version 5.0 d’Adobe Acrobat.
    Étant basé sur XML, il gère un ensemble de tags dynamiques pour l’utilisation dans le cadre du Web sémantique.
    XMP permet d’enregistrer sous forme d’un document XML des informations relatives à un fichier : titre, auteur, historique (...)

  • Formulaire personnalisable

    21 juin 2013, par

    Cette page présente les champs disponibles dans le formulaire de publication d’un média et il indique les différents champs qu’on peut ajouter. Formulaire de création d’un Media
    Dans le cas d’un document de type média, les champs proposés par défaut sont : Texte Activer/Désactiver le forum ( on peut désactiver l’invite au commentaire pour chaque article ) Licence Ajout/suppression d’auteurs Tags
    On peut modifier ce formulaire dans la partie :
    Administration > Configuration des masques de formulaire. (...)

Sur d’autres sites (2920)

  • Overcoming Fintech and Finserv’s Biggest Data Analytics Challenges

    13 septembre 2024, par Daniel Crough — Banking and Financial Services, Marketing, Security

    Data powers innovation in financial technology (fintech), from personalized banking services to advanced fraud detection systems. Industry leaders recognize the value of strong security measures and customer privacy. A recent survey highlights this focus, with 72% of finance Chief Risk Officers identifying cybersecurity as their primary concern.

    Beyond cybersecurity, fintech and financial services (finserv) companies are bogged down with massive amounts of data spread throughout disconnected systems. Between this, a complex regulatory landscape and an increasingly tech-savvy and sceptical consumer base, fintech and finserv companies have a lot on their plates.

    How can marketing teams get the information they need while staying focused on compliance and providing customer value ? 

    This article will examine strategies to address common challenges in the finserv and fintech industries. We’ll focus on using appropriate tools, following effective data management practices, and learning from traditional banks’ approaches to similar issues.

    What are the biggest fintech data analytics challenges, and how do they intersect with traditional banking ?

    Recent years have been tough for the fintech industry, especially after the pandemic. This period has brought new hurdles in data analysis and made existing ones more complex. As the market stabilises, both fintech and finserve companies must tackle these evolving data issues.

    Let’s examine some of the most significant data analytics challenges facing the fintech industry, starting with an issue that’s prevalent across the financial sector :

    1. Battling data silos

    In a recent survey by InterSystems, 54% of financial institution leaders said data silos are their biggest barrier to innovation, while 62% said removing silos is their priority data strategy for the next year.

    a graphic highlighting fintech concerns about siloed data

    Data silos segregate data repositories across departments, products and other divisions. This is a major issue in traditional banking and something fintech companies should avoid inheriting at all costs.

    Siloed data makes it harder for decision-makers to view business performance with 360-degree clarity. It’s also expensive to maintain and operationalise and can evolve into privacy and data compliance issues if left unchecked.

    To avoid or remove data silos, develop a data governance framework and centralise your data repositories. Next, simplify your analytics stack into as few integrated tools as possible because complex tech stacks are one of the leading causes of data silos.

    Use an analytics system like Matomo that incorporates web analytics, marketing attribution and CRO testing into one toolkit.

    A screenshot of Matomo web analytics

    Matomo’s support plans help you implement a data system to meet the unique needs of your business and avoid issues like data silos. We also offer data warehouse exporting as a feature to bring all of your web analytics, customer data, support data, etc., into one centralised location.

    Try Matomo for free today, or contact our sales team to discuss support plans.

    2. Compliance with laws and regulations

    A survey by Alloy reveals that 93% of fintech companies find it difficult to meet compliance regulations. The cost of staying compliant tops their list of worries (23%), outranking even the financial hit from fraud (21%) – and this in a year marked by cyber threats.

    a bar chart shows the top concerns of fintech regulation compliance

    Data privacy laws are constantly changing, and the landscape varies across global regions, making adherence even more challenging for fintechs and traditional banks operating in multiple markets. 

    In the US market, companies grapple with regulations at both federal and state levels. Here are some of the state-level legislation coming into effect for 2024-2026 :

    Other countries are also ramping up regional regulations. For instance, Canada has Quebec’s Act Respecting the Protection of Personal Information in the Private Sector and British Columbia’s Personal Information Protection Act (BC PIPA).

    Ignorance of country- or region-specific laws will not stop companies from suffering the consequences of violating them.

    The only answer is to invest in adherence and manage business growth accordingly. Ultimately, compliance is more affordable than non-compliance – not only in terms of the potential fines but also the potential risks to reputation, consumer trust and customer loyalty.

    This is an expensive lesson that fintech and traditional financial companies have had to learn together. GDPR regulators hit CaixaBank S.A, one of Spain’s largest banks, with multiple multi-million Euro fines, and Klarna Bank AB, a popular Swedish fintech company, for €720,000.

    To avoid similar fates, companies should :

    1. Build solid data systems
    2. Hire compliance experts
    3. Train their teams thoroughly
    4. Choose data analytics tools carefully

    Remember, even popular tools like Google Analytics aren’t automatically safe. Find out how Matomo helps you gather useful insights while sticking to rules like GDPR.

    3. Protecting against data security threats

    Cyber threats are increasing in volume and sophistication, with the financial sector becoming the most breached in 2023.

    a bar chart showing the percentage of data breaches per industry from 2021 to 2023
<p>

    The cybersecurity risks will only worsen, with WEF estimating annual cybercrime expenses of up to USD $10.5 trillion globally by 2025, up from USD $3 trillion in 2015.

    While technology brings new security solutions, it also amplifies existing risks and creates new ones. A 2024 McKinsey report warns that the risk of data breaches will continue to increase as the financial industry increasingly relies on third-party data tools and cloud computing services unless they simultaneously improve their security posture.

    The reality is that adopting a third-party data system without taking the proper precautions means adopting its security vulnerabilities.

    In 2023, the MOVEit data breach affected companies worldwide, including financial institutions using its file transfer system. One hack created a global data crisis, potentially affecting the customer data of every company using this one software product.

    The McKinsey report emphasises choosing tools wisely. Why ? Because when customer data is compromised, it’s your company that takes the heat, not the tool provider. As the report states :

    “Companies need reliable, insightful metrics and reporting (such as security compliance, risk metrics and vulnerability tracking) to prove to regulators the health of their security capabilities and to manage those capabilities.”

    Don’t put user or customer data in the hands of companies you can’t trust. Work with providers that care about security as much as you do. With Matomo, you own all of your data, ensuring it’s never used for unknown purposes.

    A screenshot of Matomo visitor reporting

    4. Protecting users’ privacy

    With security threats increasing, fintech companies and traditional banks must prioritise user privacy protection. Users are also increasingly aware of privacy threats and ready to walk away from companies that lose their trust.

    Cisco’s 2023 Data Privacy Benchmark Study reveals some eye-opening statistics :

    • 94% of companies said their customers wouldn’t buy from them if their data wasn’t protected, and 
    • 95% see privacy as a business necessity, not just a legal requirement.

    Modern financial companies must balance data collection and management with increasing privacy demands. This may sound contradictory for companies reliant on dated practices like third-party cookies, but they need to learn to thrive in a cookieless web as customers move to banks and service providers that have strong data ethics.

    This privacy protection journey starts with implementing web analytics ethically from the very first session.

    A graphic showing the four key elements of ethical web analytics: 100% data ownership, respecting user privacy, regulatory compliance and Data transparency

    The most important elements of ethically-sound web analytics in fintech are :

    1. 100% data ownership : Make sure your data isn’t used in other ways by the tools that collect it.
    2. Respecting user privacy : Only collect the data you absolutely need to do your job and avoid personally identifiable information.
    3. Regulatory compliance : Stick with solutions built for compliance to stay out of legal trouble.
    4. Data transparency : Know how your tools use your data and let your customers know how you use it.

    Read our guide to ethical web analytics for more information.

    5. Comparing customer trust across industries 

    While fintech companies are making waves in the financial world, they’re still playing catch-up when it comes to earning customer trust. According to RFI Global, fintech has a consumer trust score of 5.8/10 in 2024, while traditional banking scores 7.6/10.

    a comparison of consumer trust in fintech vs traditional finance

    This trust gap isn’t just about perception – it’s rooted in real issues :

    • Security breaches are making headlines more often.
    • Privacy regulations like GDPR are making consumers more aware of their rights.
    • Some fintech companies are struggling to handle fraud effectively.

    According to the UK’s Payment Systems Regulator, digital banking brands Monzo and Starling had some of the highest fraudulent activity rates in 2022. Yet, Monzo only reimbursed 6% of customers who reported suspicious transactions, compared to 70% for NatWest and 91% for Nationwide.

    So, what can fintech firms do to close this trust gap ?

    • Start with privacy-centric analytics from day one. This shows customers you value their privacy from the get-go.
    • Build and maintain a long-term reputation free of data leaks and privacy issues. One major breach can undo years of trust-building.
    • Learn from traditional banks when it comes to handling issues like fraudulent transactions, identity theft, and data breaches. Prompt, customer-friendly resolutions go a long way.
    • Remember : cutting-edge financial technology doesn’t make up for poor customer care. If your digital bank won’t refund customers who’ve fallen victim to credit card fraud, they’ll likely switch to a traditional bank that will.

    The fintech sector has made strides in innovation, but there’s still work to do in establishing trustworthiness. By focusing on robust security, transparent practices, and excellent customer service, fintech companies can bridge the trust gap and compete more effectively with traditional banks.

    6. Collecting quality data

    Adhering to data privacy regulations, protecting user data and implementing ethical analytics raises another challenge. How can companies do all of these things and still collect reliable, quality data ?

    Google’s answer is using predictive models, but this replaces real data with calculations and guesswork. The worst part is that Google Analytics doesn’t even let you use all of the data you collect in the first place. Instead, it uses something called data sampling once you pass certain thresholds.

    In practice, this means that Google Analytics uses a limited set of your data to calculate reports. We’ve discussed GA4 data sampling at length before, but there are two key problems for companies here :

    1. A sample size that’s too small won’t give you a full representation of your data.
    2. The more visitors that come to your site, the less accurate your reports will become.

    For high-growth companies, data sampling simply can’t keep up. Financial marketers widely recognise the shortcomings of big tech analytics providers. In fact, 80% of them say they’re concerned about data bias from major providers like Google and Meta affecting valuable insights.

    This is precisely why CRO:NYX Digital approached us after discovering Google Analytics wasn’t providing accurate campaign data. We set up an analytics system to suit the company’s needs and tested it alongside Google Analytics for multiple campaigns. In one instance, Google Analytics failed to register 6,837 users in a single day, approximately 9.8% of the total tracked by Matomo.

    In another instance, Google Analytics only tracked 600 visitors over 24 hours, while Matomo recorded nearly 71,000 visitors – an 11,700% discrepancy.

    a data visualisation showing the discrepancy in Matomo's reporting vs Google Analytics

    Financial companies need a more reliable, privacy-centric alternative to Google Analytics that captures quality data without putting users at potential risk. This is why we built Matomo and why our customers love having total control and visibility of their data.

    Unlock the full power of fintech data analytics with Matomo

    Fintech companies face many data-related challenges, so compliant web analytics shouldn’t be one of them. 

    With Matomo, you get :

    • An all-in-one solution that handles traditional web analytics, behavioural analytics and more with strong integrations to minimise the likelihood of data siloing
    • Full compliance with GDPR, CCPA, PIPL and more
    • Complete ownership of your data to minimise cybersecurity risks caused by negligent third parties
    • An abundance of ways to protect customer privacy, like IP address anonymisation and respect for DoNotTrack settings
    • The ability to import data from Google Analytics and distance yourself from big tech
    • High-quality data that doesn’t rely on sampling
    • A tool built with financial analytics in mind

    Don’t let big tech companies limit the power of your data with sketchy privacy policies and counterintuitive systems like data sampling. 

    Start your Matomo free trial or request a demo to unlock the full power of fintech data analytics without putting your customers’ personal information at unnecessary risk.

  • Making Your First-Party Data Work for You and Your Customers

    11 mars, par Alex Carmona

    At last count, 162 countries had enacted data privacy policies of one kind or another. These laws or regulations, without exception, intend to eliminate the use of third-party data. That puts marketing under pressure because third-party data has been the foundation of online marketing efforts since the dawn of the Internet.

    Marketers need to future-proof their operations by switching to first-party data. This will require considerable adjustment to systems and processes, but the reward will be effective marketing campaigns that satisfy privacy compliance requirements and bring the business closer to its customers.

    To do that, you’ll need a coherent first-party data strategy. That’s what this article is all about. We’ll explain the different types of personal data and discuss how to use them in marketing without compromising or breaching data privacy regulations. We’ll also discuss how to build that strategy in your business. 

    So, let’s dive in.

    The different data types

    There are four distinct types of personal data used in marketing, each subject to different data privacy regulations.

    Before getting into the different types, it’s essential to understand that all four may comprise one or more of the following :

    Identifying dataName, email address, phone number, etc.
    Behavioural dataWebsite activity, app usage, wishlist content, purchase history, etc.
    Transactional dataOrders, payments, subscription details, etc.
    Account dataCommunication preferences, product interests, wish lists, etc.
    Demographic dataAge, gender, income level, education, etc.
    Geographic DataLocation-based information, such as zip codes or regional preferences.
    Psychographic DataInterests, hobbies and lifestyle preferences.

    First-party data

    When businesses communicate directly with customers, any data they exchange is first-party. It doesn’t matter how the interaction occurs : on the telephone, a website, a chat session, or even in person.

    Of course, the parties involved aren’t necessarily individuals. They may be companies, but people within those businesses will probably share at least some of the data with colleagues. That’s fine, so long as the data : 

    • Remains confidential between the original two parties involved, and 
    • It is handled and stored following applicable data privacy regulations.

    The core characteristic of first-party data is that it’s collected directly from customer interactions. This makes it reliable, accurate and inherently compliant with privacy regulations — assuming the collecting party complies with data privacy laws.

    A great example of first-party data use is in banking. Data collected from customer interactions is used to provide personalised services, detect fraud, assess credit risk and improve customer retention.

    Zero-party data

    There’s also a subset of first-party data, sometimes called zero-party data. It’s what users intentionally and proactively share with a business. It can be preferences, intentions, personal information, survey responses, support tickets, etc.

    What makes it different is that the collection of this data depends heavily on the user’s trust. Transparency is a critical factor, too ; visitors expect to be informed about how you’ll use their data. Consumers also have the right to withdraw permission to use all or some of their information at any time.

    Diagram showing how a first-party data strategy is built on trust and transparency

    Second-party data

    This data is acquired from a separate organisation that collects it firsthand. Second-party data is someone else’s first-party data that’s later shared with or sold to other businesses. The key here is that whoever owns that data must give explicit consent and be informed of who businesses share their data with.

    A good example is the cooperation between hotel chains, car rental companies, and airlines. They share joint customers’ flight data, hotel reservations, and car rental bookings, much like travel agents did before the internet undermined that business model.

    Third-party data

    This type of data is the arch-enemy of lawmakers and regulators trying to protect the personal data of citizens and residents in their country. It’s information collected by entities that have no direct relationship with the individuals whose data it is.

    Third-party data is usually gathered, aggregated, and sold by data brokers or companies, often by using third-party cookies on popular websites. It’s an entire business model — these third-party brokers sell data for marketing, analytics, or research purposes. 

    Most of the time, third-party data subjects are unaware that their data has been gathered and sold. Hence the need for strong data privacy regulations.

    Benefits of a first-party data strategy

    First-party data is reliable, accurate, and ethically sourced. It’s an essential part of any modern digital marketing strategy.

    More personalised experiences

    The most important application of first-party data is customising and personalising customers’ interactions based on real behaviours and preferences. Personalised experiences aren’t restricted to websites and can extend to all customer communication.

    The result is company communications and marketing messages are far more relevant to customers. It allows businesses to engage more meaningfully with them, building trust and strengthening customer relationships. Inevitably, this also results in stronger customer loyalty and better customer retention.

    Greater understanding of customers

    Because first-party data is more accurate and reliable, it can be used to derive valuable insights into customer needs and wants. When all the disparate first-party data points are centralised and organised, it’s possible to uncover trends and patterns in customer behaviour that might not be apparent using other data.

    This helps businesses predict and respond to customer needs. It also allows marketing teams to be more deliberate when segmenting customers and prospects into like-minded groups. The data can also be used to create more precise personas for future campaigns or reveal how likely a customer would be to purchase in response to a campaign.

    Build trust with customers

    First-party data is unique to a business and originates from interactions with customers. It’s also data collected with consent and is “owned” by the company — if you can ever own someone else’s data. If treated like the precious resource, it can help businesses build trust with customers.

    However, developing that trust requires a transparent, step-by-step approach. This gradually strengthens relationships to the point where customers are more comfortable sharing the information they’re asked for.

    However, while building trust is a long and sometimes arduous process, it can be lost in an instant. That’s why first-party data must be protected like the Crown Jewels.

    Image showing the five key elements of a first-party data strategy

    Components of a first-party data strategy

    Security is essential to any first-party data strategy, and for good reason. As Gartner puts it, a business must find the optimal balance between business outcomes and data risk mitigation. Once security is baked in, attention can turn to the different aspects of the strategy.

    Data collection

    There are many ways to collect first-party data ethically, within the law and while complying with data privacy regulations, such as Europe’s General Data Protection Regulation (GDPR). Potential sources include :

    Website activityforms and surveys, behavioural tracking, cookies, tracking pixels and chatbots
    Mobile app interactionsin-app analytics, push notifications and in-app forms
    Email marketingnewsletter sign-ups, email engagement tracking, promotions, polls and surveys 
    Eventsregistrations, post-event surveys and virtual event analytics
    Social media interactionpolls and surveys, direct messages and social media analytics
    Previous transactionspurchase history, loyalty programmes and e-receipts 
    Customer service call centre data, live chat, chatbots and feedback forms
    In-person interactions in-store purchases, customer feedback and Wi-Fi sign-ins
    Gated contentwhitepapers, ebooks, podcasts, webinars and video downloads
    Interactive contentquizzes, assessments, calculators and free tools
    CRM platformscustomer profiles and sales data
    Consent managementprivacy policies, consent forms, preference setting

    Consent management

    It may be the final item on the list above, but it’s also a key requirement of many data privacy laws and regulations. For example, the GDPR is very clear about consent : “Processing personal data is generally prohibited, unless it is expressly allowed by law, or the data subject has consented to the processing.”

    For that reason, your first-party data strategy must incorporate various transparent consent mechanisms, such as cookie banners and opt-in forms. Crucially, you must provide customers with a mechanism to manage their preferences and revoke that consent easily if they wish to.

    Data management

    Effective first-party data management, mainly its security and storage, is critical. Most data privacy regimes restrict the transfer of personal data to other jurisdictions and even prohibit it in some instances. Many even specify where residents’ data must be stored.

    Consider this cautionary tale : The single biggest fine levied for data privacy infringement so far was €1.2 billion. The Irish Data Protection Commission imposed a massive fine on Meta for transferring EU users’ data to the US without adequate data protection mechanisms.

    Data security is critical. If first-party data is compromised, it becomes third-party data, and any customer trust developed with the business will evaporate. To add insult to injury, data regulators could come knocking. That’s why the trend is to use encryption and anonymisation techniques alongside standard access controls.

    Once security is assured, the focus is on data management. Many businesses use a Customer Data Platform. This software gathers, combines and manages data from many sources to create a complete and central customer profile. Modern CRM systems can also do that job. AI tools could help find patterns and study them. But the most important thing is to keep databases clean and well-organised to make it easier to use and avoid data silos.

    Data activation

    Once first-party data has been collected and analysed, it needs to be activated, which means a business needs to use it for the intended purpose. This is the implementation phase where a well-constructed first-party strategy pays off. 

    The activation stage is where businesses use the intelligence they gather to :

    • Personalise website and app experiences
    • Adapt marketing campaigns
    • Improve conversion rates
    • Match stated preferences
    • Cater to observed behaviours
    • Customise recommendations based on purchase history
    • Create segmented email campaigns
    • Improve retargeting efforts
    • Develop more impactful content

    Measurement and optimisation

    Because first-party data is collected directly from customers or prospects, it’s far more relevant, reliable, and specific. Your analytics and campaign tracking will be more accurate. This gives you direct and actionable insights into your audience’s behaviour, empowering you to optimise your strategies and achieve better results.

    The same goes for your collection and activation efforts. An advanced web analytics platform like Matomo lets you identify key user behaviour and optimise your tracking. Heatmaps, marketing attribution tools, user behaviour analytics and custom reports allow you to segment audiences for better traction (and collect even more first-party data).

    Image showing the five steps to developing a first-party data strategy

    How to build a first-party data strategy

    There are five important and sequential steps to building a first-party data strategy. But this isn’t a one-time process. It must be revisited regularly as operating and regulatory environments change. There are five steps : 

    1. Audit existing data

    Chances are that customers already freely provide a lot of first-party data in the normal course of business. The first step is to locate this data, and the easiest way to do that is by mapping the customer journey. This identifies all the touchpoints where first-party data might be found.

    1. Define objectives

    Then, it’s time to step back and figure out the goals of the first-party data strategy. Consider what you’re trying to achieve. For example :

    • Reduce churn 
    • Expand an existing loyalty programme
    • Unload excess inventory
    • Improve customer experiences

    Whatever the objectives are, they should be clear and measurable.

    1. Implement tools and technology

    The first two steps point to data gaps. Now, the focus turns to ethical web analytics with a tool like Matomo. 

    To further comply with data privacy regulations, it may also be appropriate to implement a Consent Management Platform (CMP) to help manage preferences and consent choices.

    1. Build trust with transparency

    With the tools in place, it’s time to engage customers. To build trust, keep them informed about how their data is used and remind them of their right to withdraw their consent. 

    Transparency is crucial in such engagement, as outlined in the 7 GDPR principles.

    1. Continuously improve

    Rinse and repeat. The one constant in business and life is change. As things change, they expose weaknesses or flaws in the logic behind systems and processes. That’s why a first-party data strategy needs to be continually reviewed, updated, and revised. It must adapt to changing trends, markets, regulations, etc. 

    Tools that can help

    Looking back at the different types of data, it’s clear that some are harder and more bothersome to get than others. But capturing behaviours and interactions can be easy — especially if you use tools that follow data privacy rules.

    But here’s a tip. Google Analytics 4 isn’t compliant by default, especially not with Europe’s GDPR. It may also struggle to comply with some of the newer data privacy regulations planned by different US states and other countries.

    Matomo Analytics is compliant with the GDPR and many other data privacy regulations worldwide. Because it’s open source, it can be integrated with any consent manager.

    Get started today by trying Matomo for free for 21 days,
    no credit card required.

  • PHP upload video files to database

    13 janvier 2016, par Mick Jack

    I am working on a school project that let users upload video files to a server. Server will compress the video using ffmpeg and store the file in upload folder. Other users will be able to stream the uploaded videos.

    My question is how do i retrieve the video that ffmpeg generated and store the link in the database ?

    i am using this code but it only retrieve path of the original video.

    $filePath = dirname(__FILE__);

    partial code of Upload.php

    $target_dir = "upload/"; //where you want to upload the files to
    $target_file = $target_dir.basename($_FILES['file']['name']);
    $fileType = pathinfo($target_file, PATHINFO_EXTENSION);
    $newFileName = $target_dir.sha1(pathinfo(basename($_FILES['file']['name']), PATHINFO_FILENAME)).'-'.time().'.'.$fileType;
    move_uploaded_file($_FILES['file']['tmp_name'], $newFileName);
    $unique_id = rand(1000000,9999999);

    shell_exec("C:\\ffmpeg\\bin\\ffmpeg.exe -i ".$newFileName." -vcodec libx264 -crf 20 \"upload\\{$newFileName}\" > logfile.txt 2>&amp;1");

    /// save information into database
                   $username = "root";
                   $password = "";
                   $hostname = "localhost";
                   $dbname = "test_database";

                   //connect to the database
                   $dbc = mysqli_connect($hostname, $username, $password, $dbname) or die ("could not connect to the database");

                   //execute the SQL query and return records
                    $result = mysqli_query($dbc, "INSERT INTO `viewvideo` (`vID`, 'video_id`, `video_link`) VALUES ('', '".$unique_id."', '".$newFileName."')");

                   if(!$result){echo mysqli_error($dbc); }

                   echo $result;

               /*  
                   declare in the order variable
                   $result = mysqli_query($dbc, $sql); //order executes
                   if($result){
                       echo("<br />Input data is succeed");
                   } else{
                       echo("<br />Input data is fail");
                   }
               */  

                   //close the connection
                   mysqli_close($dbc);

    output
    enter image description here