
Recherche avancée
Médias (2)
-
Granite de l’Aber Ildut
9 septembre 2011, par
Mis à jour : Septembre 2011
Langue : français
Type : Texte
-
Géodiversité
9 septembre 2011, par ,
Mis à jour : Août 2018
Langue : français
Type : Texte
Autres articles (59)
-
Amélioration de la version de base
13 septembre 2013Jolie sélection multiple
Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...) -
Emballe médias : à quoi cela sert ?
4 février 2011, parCe plugin vise à gérer des sites de mise en ligne de documents de tous types.
Il crée des "médias", à savoir : un "média" est un article au sens SPIP créé automatiquement lors du téléversement d’un document qu’il soit audio, vidéo, image ou textuel ; un seul document ne peut être lié à un article dit "média" ; -
Le plugin : Gestion de la mutualisation
2 mars 2010, parLe plugin de Gestion de mutualisation permet de gérer les différents canaux de mediaspip depuis un site maître. Il a pour but de fournir une solution pure SPIP afin de remplacer cette ancienne solution.
Installation basique
On installe les fichiers de SPIP sur le serveur.
On ajoute ensuite le plugin "mutualisation" à la racine du site comme décrit ici.
On customise le fichier mes_options.php central comme on le souhaite. Voilà pour l’exemple celui de la plateforme mediaspip.net :
< ?php (...)
Sur d’autres sites (3966)
-
ffmpeg transcode to live stream
14 septembre 2016, par brayancastropI need to display a ip camera stream in an html video tag, i have figured out how to transcode to a file from the rtsp stream like this
ffmpeg -i "rtsp://user:password@ip" -s 640x480 /tmp/output.mp4
now i need to be able to be able to live stream the rtsp input in a video tag like this
<video src="http://domain:port/output.mp4" autoplay="autoplay"></video>
I was trying to do something like this in my server (an ubuntu micro instance on amazon) in order to reproduce the video in the video tag but didn’t work
ffmpeg -i "rtsp://user:password@ip" -s 640x480 http://localhost:8080/stream.mp4
instead i got this log
[tcp @ 0x747b40] Connection to tcp://localhost:8080 failed: Connection refused
http://localhost:8080/stream.mp4: Connection refusedi don’t really understand what’s happening, not sure if it’s sending the output to that url or serving the output there and this, i’ve been checking the ffmpeg man docs but i didn’t find any example related to this use case and also other questiones like this one FFmpeg Stream Transcoding which is similar to my last try without success
btw, this is the camera i’m using DS-2CD2020F-I(W) - http://www.hikvision.com/en/Products_accessries_157_i5847.html
they offer an httppreview but it’s just an img tag source which updates but appears to be unstableThis is my first time trying to do something like this so any insight about how to achieve it will be really usefull and appreciated
-
AWS Lambda in Node JS with FFMPEG Lambda Layer
29 mars 2023, par mwcwge23I'm trying to make a Lambda that takes a video and puts a watermark image on it.
I'm using Lambda with NodeJS and FFMPEG Lambda Layer I took from here :
https://serverlessrepo.aws.amazon.com/applications/us-east-1/145266761615/ffmpeg-lambda-layer


I got these two errors and I don't have a clue what do I did wrong :
errors


Please help me :)


(by the way, if you have an easier solution to put a watermark image on video that'll also be great)


That's my code (trying to put a watermark image on a video file) :


const express = require("express");
const childProcess = require("child_process");
const path = require("path");
const fs = require("fs");
const util = require("util");
const os = require("os");
const { fileURLToPath } = require("url");
const { v4: uuidv4 } = require("uuid");
const bodyParser = require("body-parser");
const awsServerlessExpressMiddleware = require("aws-serverless-express/middleware");
const AWS = require("aws-sdk");
const workdir = os.tmpdir();

const s3 = new AWS.S3();

// declare a new express app
const app = express();
app.use(bodyParser.json());
app.use(awsServerlessExpressMiddleware.eventContext());

// Enable CORS for all methods
app.use(function (req, res, next) {
 res.header("Access-Control-Allow-Origin", "*");
 res.header("Access-Control-Allow-Headers", "*");
 next();
});

const downloadFileFromS3 = function (bucket, fileKey, filePath) {
 "use strict";
 console.log("downloading", bucket, fileKey, filePath);
 return new Promise(function (resolve, reject) {
 const file = fs.createWriteStream(filePath),
 stream = s3
 .getObject({
 Bucket: bucket,
 Key: fileKey,
 })
 .createReadStream();
 stream.on("error", reject);
 file.on("error", reject);
 file.on("finish", function () {
 console.log("downloaded", bucket, fileKey);
 resolve(filePath);
 });
 stream.pipe(file);
 });
};

const uploadFileToS3 = function (bucket, fileKey, filePath, contentType) {
 "use strict";
 console.log("uploading", bucket, fileKey, filePath);
 return s3
 .upload({
 Bucket: bucket,
 Key: fileKey,
 Body: fs.createReadStream(filePath),
 ACL: "private",
 ContentType: contentType,
 })
 .promise();
};

const spawnPromise = function (command, argsarray, envOptions) {
 return new Promise((resolve, reject) => {
 console.log("executing", command, argsarray.join(" "));
 const childProc = childProcess.spawn(
 command,
 argsarray,
 envOptions || { env: process.env, cwd: process.cwd() }
 ),
 resultBuffers = [];
 childProc.stdout.on("data", (buffer) => {
 console.log(buffer.toString());
 resultBuffers.push(buffer);
 });
 childProc.stderr.on("data", (buffer) => console.error(buffer.toString()));
 childProc.on("exit", (code, signal) => {
 console.log(`${command} completed with ${code}:${signal}`);
 if (code || signal) {
 reject(`${command} failed with ${code || signal}`);
 } else {
 resolve(Buffer.concat(resultBuffers).toString().trim());
 }
 });
 });
};

app.post("/api/addWatermark", async (req, res) => {
 try {
 const bucketName = "bucketName ";
 const uniqeName = uuidv4() + Date.now();
 const outputPath = path.join(workdir, uniqeName + ".mp4");
 const key = "file_example_MP4_480_1_5MG.mp4";
 const localFilePath = path.join(workdir, key);
 const watermarkPngKey = "watermark.png";
 const watermarkLocalFilePath = path.join(workdir, watermarkPngKey);

 downloadFileFromS3(bucketName, key, localFilePath)
 .then(() => {
 downloadFileFromS3(bucketName, watermarkPngKey, watermarkLocalFilePath)
 .then(() => {
 fs.readFile(localFilePath, (err, data) => {
 if (!err && data) {
 console.log("successsss111");
 }
 });
 fs.readFile(watermarkLocalFilePath, (err, data) => {
 if (!err && data) {
 console.log("successsss222");
 }
 });

 fs.readFile(outputPath, (err, data) => {
 if (!err && data) {
 console.log("successsss3333");
 }
 });

 spawnPromise(
 "/opt/bin/ffmpeg",
 [
 "-i",
 localFilePath,
 "-i",
 watermarkLocalFilePath,
 "-filter_complex",
 `[1]format=rgba,colorchannelmixer=aa=0.5[logo];[0][logo]overlay=5:H-h-5:format=auto,format=yuv420p`,
 "-c:a",
 "copy",
 outputPath,
 ],
 { env: process.env, cwd: workdir }
 )
 .then(() => {
 uploadFileToS3(
 bucketName,
 uniqeName + ".mp4",
 outputPath,
 "mp4"
 );
 });
 });
 });
 } catch (err) {
 console.log({ err });
 res.json({ err });
 }
});

app.listen(8136, function () {
 console.log("App started");
});

module.exports = app;




-
AWS Lambda execution time for FFMPEG transcoding
4 janvier 2023, par FlamingMoeI'm using AWS Lambda for converting files from WEBM to MP4


I'm using ffmpeg version 4.3.1-static https://johnvansickle.com/ffmpeg/ (I have done the following tests also with the ffmpeg in serverless AWS ffmpeg layer (that includes de 4.1.3), but results are even worse (about 25% slower)


I'm using Node 10x as container.


WEBM size Time to convert. Memory Lambda. Memory used (as shown in log)

80Mb ~44s 3008 410
40Mb ~44s 3008 375

80Mb ~70s 1024 321
40Mb ~70s 1024 279



All videos are 80s length. So as far as I can see, it does not matter the size of the WEBM, if the length of the video is the same, it takes the same to convert. So ffmpeg takes more time if the video length is higher, not if the file size is higher ... curious ;-)


But in the other hand, I'm confused with Lambda memory. I know memory and CPU comes together in Lambda ... the more memory you choose, the more CPU is assigned.


But...


- 

- Why ffmpeg just take about 300/400Mb if it has more to run ?
- How can I tell ffmpeg to use more memory ?
- Is there any option to accelerate the process in Lambda ?








Btw, In all tests, all ffmpeg are the same, and


cpu-used paramenter)


- 

- I added to ffmpeg parameters cpu-used=100, and it does not matter at all if I put cpu-used=5 ... times are the same, so I guess that parameter is useless (i don't know why)




threads parameter)


- 

- Also I did some tests with "threads" parameters, but it's useless also.




I know it's not a good comparison, but same files takes about 5 seconds to be converted in a simple dedicated server (8 vCores and 8GB RAM in OVH Centos VPS).


Btw, Amazon Elastic Transcoder is not an option :
a) it's extremely more expensive
b) it has just his profiles to convert, and my ffmpeg commands are very complex (watermarks, effects, etc ...)