
Recherche avancée
Médias (16)
-
#7 Ambience
16 octobre 2011, par
Mis à jour : Juin 2015
Langue : English
Type : Audio
-
#6 Teaser Music
16 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#5 End Title
16 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#3 The Safest Place
16 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#4 Emo Creates
15 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#2 Typewriter Dance
15 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
Autres articles (41)
-
Participer à sa traduction
10 avril 2011Vous pouvez nous aider à améliorer les locutions utilisées dans le logiciel ou à traduire celui-ci dans n’importe qu’elle nouvelle langue permettant sa diffusion à de nouvelles communautés linguistiques.
Pour ce faire, on utilise l’interface de traduction de SPIP où l’ensemble des modules de langue de MediaSPIP sont à disposition. ll vous suffit de vous inscrire sur la liste de discussion des traducteurs pour demander plus d’informations.
Actuellement MediaSPIP n’est disponible qu’en français et (...) -
Support audio et vidéo HTML5
10 avril 2011MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...) -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...)
Sur d’autres sites (5864)
-
FFMPEG multi livestream - recorded stream send to different services like YT and Twitch at different time (on different button clicks )
4 octobre 2022, par GaneshTrying for the last 10 days and still no success, I am creating a python application that will accept the URL and visit that URL using chromium, capture that screen and send that real-time screen recording to different live stream acceptors as youtube live, twitch Twitter, Facebook live or some other sources and many of these could be multiple.


There are two challenges (both challenges depend on a user action like different button clicks) -


- 

- The time of starting the Livestream we know only one Livestream acceptor and other acceptors could be sent via another API at any time or may not be sent on the whole live stream.
- Any of the streams could be stopped at any moment including the first one which started the original live streaming service






To Solve these challenges I am trying the following process (i took mp4 as a source for simplifying)


- 

- create a stream and store it into PIPE.stdout




ffmpeg_Command_get_stream = 'ffmpeg -re -i test.mp4 -f flv pipe:1'
ffmpeg_Command_get_stream=ffmpeg_Command_get_stream.split()
pipe = sp.Popen(ffmpeg_Command_get_stream,
 stdout=sp.PIPE,
 stderr=sp.PIPE,
 bufsize=8000000,
 shell=True,
 universal_newlines=True
 )
out,err = pipe.communicate()



- 

-
and send that stream with the help of FFMPEG to the Livestream acceptor with the click of the youtube Livestream button


ffmpeg_Command_send_stream = ['ffmpeg','-i',pipe.stdout,'-f','flv',RTMPURL_YOUTUBE]






Update Trying to Explain it a little more :


step 1 - I need a real-time stream from the first command, so I used -re in FFMPEG


step 2 - Use above stream as an input for other command and send that as an output as a Livestream to youtube (or twitch/Facebook), But the second step would happen only when the user click on the button "YT LiveStream", Here the tricky thing is there are multiple buttons (YT LiveStream, Twitch LiveStream, Facebook LiveStream) and user can click any time on any of button, also can click on all button one by one.




sorry for bad explaination


what I am doing wrong ? , Is this Possible ? or need to go with another process,


any help would be greatly appreciated


-
Converting uint8_t data to AVFrame with FFmpeg
30 octobre 2017, par J.LefebvreI am currently working in C++ with the Autodesk 3DStudio Max 2014 SDK (toolset 100) and the Ffmpeg library in Visual Studio 2015 and trying to convert a DIB (Device Independent Bitmap) to uint8_t pointer array and then convert these data to an AVFrame.
I don’t have any errors, but my video is still black and without meta data.
(no time display, etc)I made approximatively the same with a Visual Studio Console application to convert jpeg image sequence from disk and this is working fine.
(The only difference is that instead of converting jpeg to AVFrame with the Ffmpeg library, I try to convert raw data to an AVFrame.)So I think the problem could be either on the DIB conversion to the uint8_t data or the uint8_t data to the AVFrame.
(The second is more plausible, because I used the SFML library to display a window with my rgb uint8_t* data for debuging and it is working fine.)I first initialize the ffmpeg library :
This function is called once at the beginning.
int Converter::Initialize(AVCodecID codec_id, int width, int height, int fps, const char *filename)
{
avcodec_register_all();
av_register_all();
AVCodec *codec;
inputFrame = NULL;
codecContext = NULL;
pkt = NULL;
file = NULL;
outputFilename = new char[strlen(filename)]();
*outputFilename = '\0';
strcpy(outputFilename, filename);
int ret;
//Initializing AVCodecContext and getting PixelFormat supported by encoder
codec = avcodec_find_encoder(codec_id);
if (!codec)
return 1;
AVPixelFormat pixFormat = codec->pix_fmts[0];
codecContext = avcodec_alloc_context3(codec);
if (!codecContext)
return 1;
codecContext->bit_rate = 400000;
codecContext->width = width;
codecContext->height = height;
codecContext->time_base.num = 1;
codecContext->time_base.den = fps;
codecContext->gop_size = 10;
codecContext->max_b_frames = 1;
codecContext->pix_fmt = pixFormat;
if (codec_id == AV_CODEC_ID_H264)
av_opt_set(codecContext->priv_data, "preset", "slow", 0);
//Actually opening the encoder
if (avcodec_open2(codecContext, codec, NULL) < 0)
return 1;
file = fopen(outputFilename, "wb");
if (!file)
return 1;
inputFrame = av_frame_alloc();
inputFrame->format = codecContext->pix_fmt;
inputFrame->width = codecContext->width;
inputFrame->height = codecContext->height;
ret = av_image_alloc(inputFrame->data, inputFrame->linesize, codecContext->width, codecContext->height, codecContext->pix_fmt, 32);
if (ret < 0)
return 1;
return 0;
}Then for each frame, I get the DIB and convert to a uint8_t* it with this function :
uint8_t* Util::ToUint8_t(RGBQUAD *data, int width, int height)
{
uint8_t* buf = (uint8_t*)data;
int imageSize = width * height;
size_t rgbquad_size = sizeof(RGBQUAD);
size_t total_bytes = imageSize * rgbquad_size;
uint8_t * pCopyBuffer = new uint8_t[total_bytes];
for (int x = 0; x < width; x++)
{
for (int y = 0; y < height; y++)
{
int index = (x + width * y) * rgbquad_size;
int invertIndex = (x + width* (height - y - 1)) * rgbquad_size;
//BGRA to RGBA
pCopyBuffer[index] = buf[invertIndex + 2];
pCopyBuffer[index + 1] = buf[invertIndex + 1];
pCopyBuffer[index + 2] = buf[invertIndex];
pCopyBuffer[index + 3] = 0xFF;
}
}
return pCopyBuffer;
}
void GetDIBBuffer(Interface* ip, BITMAPINFO *bmi, uint8_t** outBuffer)
{
int size;
ViewExp& view = ip->GetActiveViewExp();
view.getGW()->getDIB(NULL, &size);
bmi = (BITMAPINFO *)malloc(size);
BITMAPINFOHEADER *bmih = (BITMAPINFOHEADER *)bmi;
view.getGW()->getDIB(bmi, &size);
uint8_t * pCopyBuffer = Util::ToUint8_t(bmi->bmiColors, bmih->biWidth, bmih->biHeight);
*outBuffer = pCopyBuffer;
}This function is used to get the DIB :
void GetViewportDIB(Interface* ip, BITMAPINFO *bmi, BITMAPINFOHEADER *bmih, BitmapInfo biFile, Bitmap *map)
{
int size;
if (!biFile.Name()[0])
return;
ViewExp& view = ip->GetActiveViewExp();
view.getGW()->getDIB(NULL, &size);
bmi = (BITMAPINFO *)malloc(size);
bmih = (BITMAPINFOHEADER *)bmi;
view.getGW()->getDIB(bmi, &size);
biFile.SetWidth((WORD)bmih->biWidth);
biFile.SetHeight((WORD)bmih->biHeight);
biFile.SetType(BMM_TRUE_32);
map = TheManager->Create(&biFile);
map->OpenOutput(&biFile);
map->FromDib(bmi);
map->Write(&biFile);
map->Close(&biFile);
}And after the conversion to AVFrame and video encoding :
The EncodeFromMem function is call each frame.
int Converter::EncodeFromMem(const char *outputDir, int frameNumber, uint8_t* data)
{
int ret;
inputFrame->pts = frameNumber;
EncodeFrame(data, codecContext, inputFrame, &pkt, file);
return 0;
}
static void RgbToYuv(uint8_t *rgb, AVCodecContext *c, AVFrame *frame)
{
struct SwsContext *swsCtx = NULL;
const int in_linesize[1] = { 3 * c->width };// RGB stride
swsCtx = sws_getCachedContext(swsCtx, c->width, c->height, AV_PIX_FMT_RGB24, c->width, c->height, AV_PIX_FMT_YUV420P, 0, 0, 0, 0);
sws_scale(swsCtx, (const uint8_t * const *)&rgb, in_linesize, 0, c->height, frame->data, frame->linesize);
}
static void EncodeFrame(uint8_t *rgb, AVCodecContext *c, AVFrame *frame, AVPacket **pkt, FILE *file)
{
int ret, got_output;
RgbToYuv(rgb, c, frame);
*pkt = av_packet_alloc();
av_init_packet(*pkt);
(*pkt)->data = NULL;
(*pkt)->size = 0;
ret = avcodec_encode_video2(c, *pkt, frame, &got_output);
if (ret < 0)
{
fprintf(stderr, "Error encoding frame/n");
exit(1);
}
if (got_output)
{
fwrite((*pkt)->data, 1, (*pkt)->size, file);
av_packet_unref(*pkt);
}
}To finish I have a function that write the packets and free the memory :
This function is called once at the end of the time range.int Converter::Finalize()
{
int ret, got_output;
uint8_t endcode[] = { 0, 0, 1, 0xb7 };
/* get the delayed frames */
do
{
fflush(stdout);
ret = avcodec_encode_video2(codecContext, pkt, NULL, &got_output);
if (ret < 0)
{
fprintf(stderr, "Error encoding frame/n");
return 1;
}
if (got_output)
{
fwrite(pkt->data, 1, pkt->size, file);
av_packet_unref(pkt);
}
} while (got_output);
fwrite(endcode, 1, sizeof(endcode), file);
fclose(file);
avcodec_close(codecContext);
av_free(codecContext);
av_frame_unref(inputFrame);
av_frame_free(&inputFrame);
//av_freep(&inputFrame->data[0]); //Crash
delete outputFilename;
outputFilename = 0;
return 0;
}EDIT :
I modify my RgbToYuv function and create another one to convert back the yuv frame to an rgb one.
This not really solve the problem, but maybe focus the problem on the conversion from YuvToRgb.
This is the result of the conversion from YUV to RGB :
![YuvToRgb result] : https://img42.com/kHqpt+
static void YuvToRgb(AVCodecContext *c, AVFrame *frame)
{
struct SwsContext *img_convert_ctx = sws_getContext(c->width, c->height, AV_PIX_FMT_YUV420P, c->width, c->height, AV_PIX_FMT_RGB24, SWS_BICUBIC, NULL, NULL, NULL);
AVFrame * rgbPictInfo = av_frame_alloc();
avpicture_fill((AVPicture*)rgbPictInfo, *(frame)->data, AV_PIX_FMT_RGB24, c->width, c->height);
sws_scale(img_convert_ctx, frame->data, frame->linesize, 0, c->height, rgbPictInfo->data, rgbPictInfo->linesize);
Util::DebugWindow(c->width, c->height, rgbPictInfo->data[0]);
}
static void RgbToYuv(uint8_t *rgb, AVCodecContext *c, AVFrame *frame)
{
AVFrame * rgbPictInfo = av_frame_alloc();
avpicture_fill((AVPicture*)rgbPictInfo, rgb, AV_PIX_FMT_RGBA, c->width, c->height);
struct SwsContext *swsCtx = sws_getContext(c->width, c->height, AV_PIX_FMT_RGBA, c->width, c->height, AV_PIX_FMT_YUV420P, SWS_BICUBIC, NULL, NULL, NULL);
avpicture_fill((AVPicture*)frame, rgb, AV_PIX_FMT_YUV420P, c->width, c->height);
sws_scale(swsCtx, rgbPictInfo->data, rgbPictInfo->linesize, 0, c->height, frame->data, frame->linesize);
YuvToRgb(c, frame);
} -
Greed is Good ; Greed Works
25 novembre 2010, par Multimedia Mike — VP8Greed, for lack of a better word, is good ; Greed works. Well, most of the time. Maybe.
Picking Prediction Modes
VP8 uses one of 4 prediction modes to predict a 16x16 luma block or 8x8 chroma block before processing it (for luma, a block can also be broken into 16 4x4 blocks for individual prediction using even more modes).So, how to pick the best predictor mode ? I had no idea when I started writing my VP8 encoder. I did not read any literature on the matter ; I just sat down and thought of a brute-force approach. According to the comments in my code :
// naive, greedy algorithm : // residual = source - predictor // mean = mean(residual) // residual -= mean // find the max diff between the mean and the residual // the thinking is that, post-prediction, the best block will // be comprised of similar samples
After removing the predictor from the macroblock, individual 4x4 subblocks are put through a forward DCT and quantized. Optimal compression in this scenario results when all samples are the same since only the DC coefficient will be non-zero. Failing that, when the input samples are at least similar to each other, few of the AC coefficients will be non-zero, which helps compression. When the samples are all over the scale, there aren’t a whole lot of non-zero coefficients unless you crank up the quantizer, which results in poor quality in the reconstructed subblocks.
Thus, my goal was to pick a prediction mode that, when applied to the input block, resulted in a residual in which each element would feature the least deviation from the mean of the residual (relative to other prediction choices).
Greedy Approach
I realized that this algorithm falls into the broad general category of "greedy" algorithms— one that makes locally optimal decisions at each stage. There are most likely smarter algorithms. But this one was good enough for making an encoder that just barely works.Compression Results
I checked the total file compression size on my usual 640x360 Big Buck Bunny logo image while forcing prediction modes vs. using my greedy prediction picking algorithm. In this very simple test, DC-only actually resulted in slightly better compression than the greedy algorithm (which says nothing about overall quality).prediction mode quantizer index = 0 (minimum) quantizer index = 10 greedy 286260 98028 DC 280593 95378 vertical 297206 105316 horizontal 295357 104185 TrueMotion 311660 113480 As another data point, in both quantizer cases, my greedy algorithm selected a healthy mix of prediction modes :
- quantizer index 0 : DC = 521, VERT = 151, HORIZ = 183, TM = 65
- quantizer index 10 : DC = 486, VERT = 167, HORIZ = 190, TM = 77
Size vs. Quality
Again, note that this ad-hoc test only measures one property (a highly objective one)— compression size. It did not account for quality which is a far more controversial topic that I have yet to wade into.