Recherche avancée

Médias (0)

Mot : - Tags -/auteurs

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (41)

  • Les vidéos

    21 avril 2011, par

    Comme les documents de type "audio", Mediaspip affiche dans la mesure du possible les vidéos grâce à la balise html5 .
    Un des inconvénients de cette balise est qu’elle n’est pas reconnue correctement par certains navigateurs (Internet Explorer pour ne pas le nommer) et que chaque navigateur ne gère en natif que certains formats de vidéos.
    Son avantage principal quant à lui est de bénéficier de la prise en charge native de vidéos dans les navigateur et donc de se passer de l’utilisation de Flash et (...)

  • Use, discuss, criticize

    13 avril 2011, par

    Talk to people directly involved in MediaSPIP’s development, or to people around you who could use MediaSPIP to share, enhance or develop their creative projects.
    The bigger the community, the more MediaSPIP’s potential will be explored and the faster the software will evolve.
    A discussion list is available for all exchanges between users.

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (6034)

  • FFMPEG select highest bitrage input stream of hls m3u8 file

    3 juin 2017, par Gordon Austin

    I am attempting to use ffmpeg to record an HLS Livestream, described by input.m3u8. input.m3u8 contains a number of different bitrate streams : input_01.m3u8, input_02.m3u8, ... ; which contain the actual mpeg-ts segmented video files. Frequently the number and quality of the available streams varies. I am trying to make this an automated process so that my co-workers can use it, but I need ffmpeg to always select the best available stream from the input.m3u8 file. Can anybody point me in the right direction on this ?

    Currently I use :

    ffmpeg -n -i "http://path/input_0x.m3u8" -c copy "%path%\%FileName%

    where %path% and %filename% are defined by the batch file calling ffmpeg and I manually look up the best bitrate stream.

  • Anomalie #2256 : Remplacer eval par include

    28 août 2011, par cedric -

    voir deja r18389. Il reste ensuite 2 cas d’eval notables :

    celui de l’eval du cache quand il contient du PHP . cf résolution ci-dessus avec impact sur squelette principal.

    celui de l’eval des morceaux de code lors de la compilation d’un squelette pour detecter un bug dans une boucle. Voir (...)

  • VP8 Codec Optimization Update

    15 juin 2010, par noreply@blogger.com (John Luther) — inside webm

    Since WebM launched in May, the team has been working hard to make the VP8 video codec faster. Our community members have contributed improvements, but there’s more work to be done in some interesting areas related to performance (more on those below).


    Encoder


    The VP8 encoder is ripe for speed optimizations. Scott LaVarnway’s efforts in writing an x86 assembly version of the quantizer will help in this goal significantly as the quantizer is called many times while the encoder makes decisions about how much detail from the image will be transmitted.

    For those of you eager to get involved, one piece of low-hanging fruit is writing a SIMD version of the ARNR temporal filtering code. Also, much of the assembly code only makes use of the SSE2 instruction set, and there surely are newer extensions that could be made use of. There are also redundant code removal and other general cleanup to be done ; (Yaowu Xu has submitted some changes for these).

    At a higher level, someone can explore some alternative motion search strategies in the encoder. Eventually the motion search can be decoupled entirely to allow motion fields to be calculated elsewhere (for example, on a graphics processor).

    Decoder


    Decoder optimizations can bring higher resolutions and smoother playback to less powerful hardware.

    Jeff Muizelaar has submitted some changes which combine the IDCT and summation with the predicted block into a single function, helping us avoid storing the intermediate result, thus reducing memory transfers and avoiding cache pollution. This changes the assembly code in a fundamental way, so we will need to sync the other platforms up or switch them to a generic C implementation and accept the performance regression. Johann Koenig is working on implementing this change for ARM processors, and we’ll merge these changes into the mainline soon.

    In addition, Tim Terriberry is attacking a different method of bounds checking on the "bool decoder." The bool decoder is performance-critical, as it is called several times for each bit in the input stream. The current code handles this check with a simple clamp in the innermost loops and a less-frequent copy into a circular buffer. This can be expensive at higher data rates. Tim’s patch removes the circular buffer, but uses a more complex clamp in the innermost loops. These inner loops have historically been troublesome on embedded platforms.

    To contribute in these efforts, I’ve started working on rewriting higher-level parts of the decoder. I believe there is an opportunity to improve performance by paying better attention to data locality and cache layout, and reducing memory bus traffic in general. Another area I plan to explore is improving utilization in the multi-threaded decoder by separating the bitstream decoding from the rest of the image reconstruction, using work units larger than a single macroblock, and not tying functionality to a specific thread. To get involved in these areas, subscribe to the codec-devel mailing list and provide feedback on the code as it’s written.

    Embedded Processors


    We want to optimize multiple platforms, not just desktops. Fritz Koenig has already started looking at the performance of VP8 on the Intel Atom platform. This platform need some attention as we wrote our current x86 assembly code with an out-of-order processor in mind. Since Atom is an in-order processor (much like the original Pentium), the instruction scheduling of all of the x86 assembly code needs to be reexamined. One option we’re looking at is scheduling the code for the Atom processor and seeing if that impacts the performance on other x86 platforms such as the Via C3 and AMD Geode. This is shaping up to be a lot of work, but doing it would provide us with an opportunity to tighten up our assembly code.

    These issues, along with wanting to make better use of the larger register file on x86_64, may reignite every assembly programmer’s (least ?) favorite debate : whether or not to use intrinsics. Yunqing Wang has been experimenting with this a bit, but initial results aren’t promising. If you have experience in dealing with a lot of assembly code across several similar-but-kinda-different platforms, these maintainability issues might be familiar to you. I hope you’ll share your thoughts and experiences on the codec-devel mailing list.

    Optimizing codecs is an iterative (some would say never-ending) process, so stay tuned for more posts on the progress we’re making, and by all means, start hacking yourself.

    It’s exciting to see that we’re starting to get substantial code contributions from developers outside of Google, and I look forward to more as WebM grows into a strong community effort.

    John Koleszar is a software engineer at Google.